Programming Instruction Manual

Modular SCR Power Controller with Independent PID control

PK559 0037-75586 May 2019

Table of Contents

Introduction	2
Field of Use	2
Characteristics of Personnel	2
Structure of this Manual	3
Communications	4
Serial Communication (Modbus)	5
C4 Compatibale Mode	5
C4 Mode	5
Connection	5
Installation of Modbus Serial Netqrok	5
Inputs	7
INA Analog Input	7
Main Inputs	9
Linearization of Input Signal	. 12
Signals from Sensors	. 12
Current Value In Load	. 13
Voltage Value On Load	16
Line Voltage Value	.18
Power On Load	.20
Auxiliary Analog Inputs (LIN/TC)	22
Digital Inputs (40 to 300 A)	25
Digital Inputs (400 to 600 A)	26
Using a Function Associated with Digital Input and Via Serial	28
Using a Function of Digital Input 1 to Enable	.20
Alarms	. 30
Generic Alarms Al1, Al2, Al3 And Al4	. 30
LBA Alarm (Loop Break Alarm)	. 35
HB Alarm (Heater Break Alarm)	. 36
SBR - Err Alarm (Probe In Short Or Connection Error)	. 41
Power Fault Alarms (SSR_short, No_voltage and No_current)	. 42
Overheat Alarm	. 43
Fuse_open and Short_circuit_current Alarms	. 43
Overcurrent Fault Protection (40 to 300A Models)	. 44
Outputs	. 45
Allocation of Reference Signals	. 46
Allocation of Physical Outputs	. 49
Analog Outputs (400 to 600A Models)	. 51

Settings	52
Setting the Setpoint	52
Setpoint Control	53
·	
Controls	55
Control Actions	55
Proportional, Deriviative & Integral Action	55
Heat/Cool Control with Relative Gain	56
PID Parameters (40 to 300A)	56
PID Prameters (400 to 600A)	56
Automatic / Manual Control	60
Hold Function	60
Manual Power Correction	60
Start Mode	61
Autotuning	62
Self-Tuning	64
Soft Start	65
Software Shutdown	66
	~-
Other Functions	67
Fault Action Power	67 67
Fault Action Power Power Alarm	67 67 67
Fault Action Power Power Alarm	67 67 67 69
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle)	67 67 67 69 70
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle)	67 67 67 69 70 70
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter	67 67 67 69 70 70
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter	67 67 69 70 70 70
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter Power Control SSR Control Modes	67 67 69 70 70 70 71 71
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter Power Control SSR Control Modes Softstart or Start Ramp	67 67 69 70 70 70 71 71 72
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter Power Control SSR Control Modes Softstart or Start Ramp Delay Triggering	67 67 69 70 70 70 71 71 72 73
Other Functions Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter Power Control SSR Control Modes Softstart or Start Ramp Delay Triggering Feedback Modes	67 67 69 70 70 70 70 71 71 72 73 74
Other Functions Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter Power Control SSR Control Modes Softstart or Start Ramp Delay Triggering Feedback Modes Heuristic Control Power	67 67 69 70 70 70 71 71 72 73 74 76
Other Functions Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter Operating Hour Meter SSR Control Softstart or Start Ramp Delay Triggering Feedback Modes Heuristic Control Power Heterogeneous Power Control	67 67 69 70 70 71 71 72 73 74 76 77
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter Power Control SSR Control Modes Softstart or Start Ramp Delay Triggering Feedback Modes Heuristic Control Power Heterogeneous Power Control Virtual Instrument Control	67 67 69 70 70 70 71 71 72 73 74 76 77 78
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter Power Control SSR Control Modes Softstart or Start Ramp Delay Triggering Feedback Modes Heuristic Control Power Heterogeneous Power Control Virtual Instrument Control	67 67 69 70 70 70 71 71 72 73 74 76 77 78
Fault Action Power Power Alarm	67 67 69 70 70 70 71 71 72 73 74 76 77 78 80
Fault Action Power Power Alarm Softstart for Preheating Heating Output (Fast Cycle) Operating Hour Meter Power Control SSR Control Modes Softstart or Start Ramp Delay Triggering Feedback Modes Heuristic Control Power Heterogeneous Power Control Virtual Instrument Control	67 67 69 70 70 71 71 72 73 74 76 77 78 80

iv

ATTENTION!

This manual is an integral part of the product, and must always be available to operators.

This manual must always accompany the product, including if it is transferred to another user.

Installation and/or maintenance workers MUST read this manual and precisely follow all of the instructions in it and in its attachments. Chromalox will not be liable for damage to persons and/or property, or to the product itself, if the following terms and conditions are disregarded. The Customer is obligated to respect trade secrets. Therefore, this manual and its attachments may not be tampered with, changed, reproduced, or transferred to third parties without Chromalox's authorization.

Important Safeguards

AWARNING

HIGH VOLTAGE (up to 690 VAC) is used in the operation of this equipment; DEATH ON CON-TACT may result if personnel fail to observe safety precautions.

Learn the areas containing high-voltage connections when installing or operating this equipment.

WARNING

Be careful not to contact high-voltage connections when installing or operating this equipment.

Before working inside the equipment, turn power off and ground all points of high potential before touching them.

ACAUTION

The owner/installer must provide all necessary safety and protection devices and follow all current electrical wiring standards and regulations. Failure to do so may compromise the integrity of the controller and/or cause product failure resulting in a safety risk to operational and service personnel.

ACAUTION

This controller utilizes a heat sink which is designed to cool the unit during operation. Under no circumstance should air flow around the controller be compromised in any way. Failure to do so may result in the overheating of the controller, product failure, product temperatures and even fire.

AWARNING

During continuous operation, the heat sink can reach very high temperatures, and keeps a high temperature even after the unit is turned off due to its high thermal inertia.

Higher voltages may be present. DO NOT work on the power section without first cutting out electrical power to the panel. Failure to do so may cause serious injury or death.

AWARNING

ELECTRIC SHOCK HAZARD: Any installation involving control equipment must be performed by a qualified person and must be effectively grounded in accordance with the National Electrical Code to eliminate shock hazard.

Introduction

The modular power controller described in this manual and shown on the cover is a separate unit for the independent control of a maximum of 3 zones. It offers high applicative flexibility thanks to the extended configurability and programmability of its parameters.

Instrument configuration and programming must be performed with a CFW-OP or a PC connected in USB/RS232/RS485, with specific C-PWR application software.

Since it is impossible to foresee all of the installations and environments in which the instrument may be applied, adequate technical preparation and complete knowledge of the instrument's potentials are necessary.

Field of Use

The modular power controller is the ideal solution for applications in heat treatment furnaces, in thermoformers, in packaging and packing machines and, in general, in standard temperature control applications. Nevertheless, because it is highly programmable, the controller can also be used for other applications provided they are compatible with the instrument's technical data.

Although the instrument's flexibility allows it to be used in a variety of applications, the field of use must always conform to the limits specified in the technical data supplied.

Chromalox declines all liability for damage of any type deriving from installations, configurations, or programmings that are inappropriate, imprudent, or not conforming to the technical data supplied.

Prohibited Use

It is absolutely prohibited:

- to utilize the instrument or parts of it (including software) for any use not conforming to that specified in the technical documentation supplied;
- to modify working parameters inaccessible to the operator, decrypt or transfer all or part of the software;
- to utilize the instrument in explosive atmospheres;
- to repair or convert the instrument using non-original replacement parts;
- to utilize the instrument or parts of it without having read and correctly understood the technical documentation supplied;
- to scrap or dispose of the instrument in normal dumps; components that are potentially harmful to the environment must be disposed of in conformity to the regulations of the country of installation..

Characteristics of Personnel

This manual is intended for technical personnel, who commission the instrument by connecting it to other units, and for service and maintenance personnel.

It is assumed that such persons have adequate technical knowledge, especially in the fields of electronics and automation.

The instrument described in this manual may be operated only by personnel who are trained for their assigned task, in conformity to the instructions for such task and, specifically, to the safety warnings and precautions contained in such instructions.

Thanks to their training and experience, qualified personnel can recognize the risks inherent to the use of these products/systems and are able to avoid possible dangers.

Structure of this Manual

The instructions in this manual do not replace the safety instructions and the technical data for installation, configuration and programming applied directly to the product or the rules of common sense and safety regulations in effect in the country of installation.

For easier understanding of the controller's basic functions and its full potentials, the configuration and programming parameters are grouped according to function and are described in separate chapters.

Each chapter has from 1 to 3 sections:

- the first section presents a general description of the parameters described in detail in the following zones;
- the second section presents the parameters needed for the controller's basic applications, which users and/or installers can access clearly and easily, immediately finding the parameters necessary for quick use of the controller;
- the third section (ADVANCED SETTINGS) presents parameters for advanced use of the controller:

this section is addressed to users and/or installers who want to use the controller in special applications or in applications requiring the high performance offered by the instrument.

Main Modbus address and additional addresses (if any).

Some sections may contain a functional diagram showing interaction among the parameters described;

• terms used on other pages of the manual (related or supplemental topics) are shown in underlined italics and listed in the index (linked to IT support).

In each section, the programming parameters are shown as follows:

For reference:

- 1. CFW-M refers to master module. A CFW1 is by default CFW-M.
- 2. CFW-E1 refers to expansion module 1. A CFW2 would include CFW-M (as module 1) and CFW-E1 (as module 2)
- 3. CFW-E2 refer to two expansion modules. A CFW3 would include CFW-M (as module 1) and CFW-E2 (as module 2 and 3).

Communications

The modular power controller's flexibility permits replacement of previous-version such as Chromalox (CFW), C4 and C4-IR instruments without changing the control software in use.

Based on the chosen work mode (see MODBUS SERIAL COMMUNICATION), you can use the instrument in 2 different modes:

- CFW compatible mode: as if there were at most 3 separate instruments (recommended for retrofitting projects and/ or replacement of damaged instruments);

- CF4/CFW mode: as a single instrument with the same functions as at most 3 separate instruments, but with possibility of interaction among the various parameters, inputs and outputs (recommended for new projects).

New shared parameters, are accessible for both modes and permit more advanced functions such as:

604	FLE.2	R/W	Digital Filter for Auxiliary Input	0.020.0 sec	0.1
-----	-------	-----	------------------------------------	-------------	-----

In addition to having a CUSTOM group of parameters for dynamic addressing, CFW mode lets you use a single communication network node in-stead of 4 nodes as in Compatible mode.

NOTE! When programming, keep in mind that the addresses (parameters) described in this manual exist 4 times, specified by address node (ID).

CFW Compatible Mode Diagram

Serial Communication (Modbus)

There are two Modbus addressing modes for variables and configuration parameters:

- C4 compatible mode
- C4

The modes are selected with dip-switch-7.

C4 Compatible Mode (Dip-Switch-ON)

This lets you use supervision programs created for C4 modules.

Memory is organized into 4 groups:

- Zone 1 for the variables of the mudule CFW-M
- Zone 2 for the variables of the mudule CFW-E1
- Zone 3 for the variables of the mudule CFW-E2

In each zone, the variables and parameters have the same address as a Geflex instrument; the value (Cod) set on the rotary switches corresponds to that of Zone 1; the values in the other zones, if expansions are present, are sequential.

Examples:

if the rotary switches have value 14, node 14 addresses Zone 1 (CFW-M), node 15 Zone 2 (CFW-E1), node 16 Zone 3 (CFW-E2).

The power Ou.P for Zone 1 has address Cod 2, the Ou.P for Zone 2 has address Cod+1, 2, etc...

Parameter out.5, which defines the function of output OUT 5 on the CFW, has address Cod 611.

C4/CFW Mode (Dip-Switch-OFF)

This lets you optimize the efficiency of serial communication by integrating 3 zones in the C4. Memory is organized into 4 groups: 3 already in C4-compatible mode, plus one group defined as custom:

- Custom (additional memory map for dynamic addresses)
- Zone 1 for the variables of the mudule CFW-M
- Zone 2 for the variables of the mudule CFW-E1
- Zone 3 for the variables of the mudule CFW-E2

The custom group contains variables and parameters for a maximum of 120 words. The meaning of these words can be changed.

There is a single value (Cod) set on the rotary switches; i.e., one for each C4/CFW instrument. To access the data in each zone, simply add an offset to the address (+1024 for Zone 1, +2048 for Zone 2, +4096 for Zone 3).

Words in the custom group have addresses 0,...,119. The variables and parameters are defined by default. At addresses 200,...,319 we have words containing the value of the address of the corresponding variables or parameters. These addresses can be changed by the user, offering the ability to read/write data with multiword messages structured according to various supervision requirements. **NOTE:** Protection of Maps 1-2. You have to write the value 99 on addresses 600 and 601 to enable change of the custom group (addresses 200... 319). This value is reset at each switch-on.

Examples:

you can access the Ou.P variable in Zone 1 with address Cod, 1+1024 or address Cod, 11 custom variable 12 (address Cod, 211 has value 2+1024);

you can access the Ou.P variable in Zone 2 with address Cod, 2+ 2048 or address Cod, 40 custom variable 41 (address Cod, 240 has value 2+2048);

if you want to read the 3 powers in sequence at the first 3 addresses, set Cod, 200 = 1026, Cod.201 = 2050, Cod,202 = 4098.

Connection

Each CFW has an optically isolated serial port RS485 (PORT 1) with standard Modbus protocol via connectors J8 and J9 (type RJ10).

You can insert a serial interface (PORT 2). There are various models based on the field bus required: Modbus, Profibus DP, CANopen and Ethernet.

This communication port (PORT 2) has the same Cod address as PORT 1.

The parameters for PORT 2 are bAu.2 (select baud-rate) and Par.2 (select parity).

The Cod parameter (read only) shows the value of the node address, settable from 00 to 99 with the 2 rotary switches; the hexadecimal settings are reserved.

A parameter can be read or written from both communication ports (PORT 1 and PORT 2).

AWARNING

Changing the bAu (select baud-rate) and/or PAr (select parity) parameters may cause communication failure.

To set the bAu and PAr parameters, you have to run the Autobaud procedure described in the "Instruction and warnings" manual.

Installation of the "MODBUS" Serial Network

A network typically has a Master that "manages" communication by means of "commands" and Slaves that interpret these commands.

CFW are considered Slaves to the network master, which is usually a supervision terminal or a PLC.

They are positively identified by means of a node address (ID) set on the rotary switches (tens + ones).

CFW have a ModBus serial (Serial 1) and optional Fieldbus (Serial 2) serial (see order code) with one of the following

protocols: ModBus, Profibus, CANopen, Ethernet, EtherCAT and EthernetIP.

The following procedures are indispensable for the Modbus protocol.

For the remaining protocols, see the specific manuals.

CFW modules have the following default settings:

- node address = 0(0 + 0)
- speed Serial 1 = 19200 bit/s
- parity Serial 1 = none
- speed Serial 2 = 19200 bit/s
- parity Serial 2 = none

You can install a maximum of 99 CFW modules in a serial network, with node address selectable from "01" to "99" in standard mode, or create a mixed CFW/C4 network in C4 compatible mode in which each CFW identifies 3 zones with sequential node address starting from the code set on the rotary switches.

In short, the valid rotary switch settings (tens + ones) are:

-(0+0) = Autobaud Serial 1

-(B+0) = Autobaud Serial 2

46	Eod	R	Instrument Identification Code 1 99			
45	ხჩი	R/W	Select Baudrate – Serial 1	Baud	rate Table	4
626	50Rd	R/W	Select Baudrate – Serial 2	bAud	Baudrate	4
				0	1200 bit/s	
				1	2400 bit/s	
				2	4800 bit/s	
				3	9600 bit/s	
				4	19200 bit/s	
				5	38400 bit/s	
				6	57600 bit/s	
				7	115200 bit/s	
47	PAr	R/W	Select Parity – Serial 1	Pari	ty Table	0
627	2-A9	R/W	Select Parity – Serial 2	_Par	Parity	0
				0	No Parity	0
			1 Odd			
				2	Even	

Communication Error

If Modbus communication between CFW and Master node goes into timeout (settable in C.E.t parameter), you can force an output power value (C.E.P parameter of each zone) and transmit the alarm state to a relay output (rL.x parameters).

890	665	R/W	Timeout for communication error	0 se	0121 Value 0 disables the function				
891	66W)	R/W	Mode for communication error		Mode Table for Communication error			0 Zone 2	0 Zone 3
				(0 Delivered power is not changed				
				1	Delivered power is forced to C.E.P value				
				+16 C.E. resta if in	+16 only for C.M.E.=1: copy of C.E.P. in MANUAL POWER at the restart of the communication (only if in manual mode)				
892	CEb	R/W	Output power when communication error is act	tive	0121 ive sec -100.0100.		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3

Inputs

INA ANALOG INPUT

The modular power controller has an analog input with the functionality of power control.

573	£P.81	R/W	Analog Input 1		Table of Analog Input		
				0	Disable		
837*	Fb'85	R/W	Analog Input 2	1	010V	1	
*For models	400-600A Only			2	05V / Potentiometer		
844*	£P.83	R/W	Analog Input 3	3	020mA	1	
*For models 400-600A Only				4	420mA		

Scale Limits

Scale	Limits				
574	LS.81	R/W	Minimum scale limit analog input 1	-100.0200.0	0.0
838*	LS.82	R/W	Minimum scale limit analog input 2	-100.0200.0	0.0
845*	LS.83	R/W	Minimum scale limit analog input 3	-100.0200.0	0.0
575	HS.RI	R/W	Maximum scale limit analog input 1	LS.A1200.0	100.0
839*	X5.82	R/W	Maximum scale limit analog input 2	LS.A2200.0	100.0
846	HS.83	R/W	Maximum scale limit analog input 3	LS.A3200.0	100.0

Examples of LS.A and HS.A parameter settings

The default values (LS.A = 0.0 and HS.A = 100.0) can be changed to obtain the required scale of the PV in engineering value corresponding to the minimum and maximum of the physical input (V/mA).

In automatic mode, the engineering value (PV) is attributed to power Ou.P for values between 0.0 and 100.0.

Since the 0...10V input range is reduced 80% above, the scale interval (HS.A – LS.A) must be extended downward so that the useful interval (100.0 – 0.0) is 80% (100.0/125.0 = 0.8).

Since the 0...10V input range is reduced 90% below, the scale interval (HS.A – LS.A) must be extended upward so that the useful interval (100.0 – 0.0) is 90% (100.0/111.1 = 0.9).

Offset Adjustment

577	oFSRI	R/W	Offset connection for analog Input 1	-99.999.9	0.0
841	oFSR2	R/W	Offset connection for analog Input 2	-99.999.9	0.0
848	oFS83	R/W	Offset connection for analog Input 3	-99.999.9	0.0

Read State

572	1681	R	Value of the ingegneristico reading analog input 1
836	58nl	R	Value of the ingegneristico reading analog input 2
843	In83	R	Value of the ingegneristico reading analog input 3

Advanced Settings

Input Filter

576	FLERI	R/W	Low pass digital filter analog input 1	0.020.0 sec.	0.1
840	FLE82	R/W	Low pass digital filter analog input 2	0.020.0 sec.	0.1
847	FLEA3	R/W	Low pass digital filter analog input 3	0.020.0 sec.	0.1

Functional Diagram

Main Inputs

The modular power controller has one optional input (IN1) to control, to which you can connect temperature sensors (thermocouples and RTD), linear sensors or custom sensors to acquire process variable (PV) values. This type of input is optional.

To configure, you always have to define the type of probe or sensor (tYP), the maximum and minimum scale limit (Hi.S – Lo.S) for the process variable value, and the position of the decimal point (dP.S).

If the sensor is a thermocouple or resistance thermometer, the minimum and maximum limits can be defined on the specific scale of the sensor. These limits define the width of the proportional control band and the range of values settable for the setpoint and alarm setpoints.

There is a parameter to correct the offset of the input signal (oF.S): the set value is algebraically added to the read of the process variable.

You can read the state of the main input (Err) in which an input error is reported: when the process variable goes beyond the upper or lower scale limit, it assumes the value of the limit and the corresponding state reports the error condition:

Lo = process variable < minimum scale limit

Hi = process variable > maximum scale limit

Err = Pt100 in short circuit and input value below minimum limit, 4...20mA transmitter interrupted or not powered

Sbr = Tc probe interrupted or input value above maximum limit If noise on the main input causes instability of the acquired value, you can reduce its effect by setting a low pass digital filter (Flt). The default setting of 0.1sec is usually sufficient.

You can also use a digital filter (Fld) to increase the apparent stability of the process variable PV; the filter introduces a hysteresis on its value: if the input variation remains within the set value, the DPV value is considered unchanged.

Probes and Sensors

400	ESP.	R/W	Probe type, signal, en- able, custom linearization and main input scale

Maxi	imum error	of non	linearity	for	thermocouples
(Tc),	resistance	thermo	ometer (F	PT10)0)

Tc tipo:

J, K,	0. N	error < 0.2% f.s.
S, R	range 01750°C: For other ranges:	error < 0.2% f.s. (t > 300°C) error < 0.5% f.s.
I	error < 0.2% f.s. (t >	-150°C)
	And inserting a custo	om linearization
E, L B	range 441800°C; range 44.0999.9;	error <0.2%f.s. error < 0.5% f.s. (t > 300°C) error f.s.(t>300°C)
U	range -200400;	error < 0.2% f.s. (per t >
-100°	C)	orrege of EQ(fo
G D	error < 0.2% f.s. (t > error < 0.2% f.s. (t >	300°C) 200°C)
С	range 02300; For other ranges;	error < 0.2% f.s. error < 0.5% f.s.
JPT1	00 e PT100	error < 0.2% f.s.
The e	rror is calculated as o	deviation from theoretical

value with % reference to the full-scale value expressed in degrees Celsius (°C).

Type Type of Probe Scale Without Dec. Point With Dec. Point 0 TC J °C 0/1000 0.0/99.9 1 TC J °F 32/1832 32.0/999.9 2 TC K °C 0/1300 0.0/1300.0 3 TC K °F 32/2372 32.0/999.9 4 TC R °C 0/1750 0.0/1750.0 5 TC R °F 32/3182 32.0/999.9 6 TC S °C 0/1750 0.0/1750.0 7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/400.0 9 TC T °F 32/2372 32.0/999.9 28 TC custom custom custom 10 TC N °F -328/752 -199.9/90.9 28 TC custom custom custom 29 TC custom custom -199.9/99.9 <t< th=""><th colspan="7">TC Sensors</th></t<>	TC Sensors						
Type Probe Scale Dec. Point Dec. Point 0 TC J °C 0/1000 0.0/999.9 1 TC J °F 32/1832 32.0/999.9 2 TC K °C 0/1300 0.0/1300.0 3 TC K °F 32/2372 32.0/999.9 4 TC R °C 0/1750 0.0/1750.0 5 TC R °F 32/3182 32.0/999.9 6 TC S °C 0/1750 0.0/1750.0 7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/400.0 9 TC R °F 32/3182 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 30 PT100 °C -200/850 -199.9/99.9 32 JPT100 °C -200/600 -199.9/99.9 32		Type of		Without	With		
0 TC J °C 0/1000 0.0/999.9 1 TC J °F 32/1832 32.0/999.9 2 TC K °C 0/1300 0.0/1300.0 3 TC K °F 32/2372 32.0/999.9 4 TC R °C 0/1750 0.0/1750.0 5 TC R °F 32/3182 32.0/999.9 6 TC S °C 0/1750 0.0/1750.0 7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/400.0 9 TC T S °F 32/3182 32.0/999.9 8 TC T C C S °C 0/1300 0.0/1300.0 11 TC N °C 0/1300 0.0/1300.0 0.0/1300.0 11 TC N °C custom custom custom 29 TC custom custom custom 30 PT100<°C	Туре	Probe	Scale	Dec. Point	Dec. Point		
1 TC J °F 32/1832 32.0/999.9 2 TC K °C 0/1300 0.0/1300.0 3 TC K °F 32/2372 32.0/999.9 4 TC R °C 0/1750 0.0/1750.0 5 TC R °F 32/3182 32.0/999.9 6 TC S °C 0/1750 0.0/1750.0 7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/400.0 9 TC T °F -328/752 -199.9/9752.0 10 TC N °C 0/1300 0.0/1300.0 11 TC N °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 30 PT100 °C -200/850 -199.9/999.9 31 PT100 °C -200/600 -199.9/999.9 32 <	0	TC J	°C	0/1000	0.0/999.9		
2 TC K °C 0/1300 0.0/1300.0 3 TC K °F 32/2372 32.0/999.9 4 TC R °C 0/1750 0.0/1750.0 5 TC R °F 32/3182 32.0/999.9 6 TC S °C 0/1750 0.0/1750.0 7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/400.0 9 TC T °F -328/752 -199.9/752.0 10 TC N °C 0/1300 0.0/1300.0 11 TC N °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 30 PT100 °C -200/850 -199.9/950.0 31 PT100 °C -200/600 -199.9/999.9 32 JPT100 °C -200/600 -199.9/999.9 33	1	TC J	°F	32/1832	32.0/999.9		
3 TC K °F 32/2372 32.0/999.9 4 TC R °C 0/1750 0.0/1750.0 5 TC R °F 32/3182 32.0/999.9 6 TC S °C 0/1750 0.0/1750.0 7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/400.0 9 TC T °F -328/752 -199.9/752.0 10 TC N °C 0/1300 0.0/1300.0 11 TC N °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 30 PT100 °C -200/800 -199.9/950.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °F -328/1112 -199.9/999.9 33 JPT100 °F -328/1112 -199.9/999.9 35	2	TC K	°C	0/1300	0.0/1300.0		
4 TC R °C 0/1750 0.0/1750.0 5 TC R °F 32/3182 32.0/999.9 6 TC S °C 0/1750 0.0/1750.0 7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/752.0 9 TC T °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 29 TC custom custom custom 30 PT100 °C -200/850 -199.9/99.9 32 JPT100 °C -200/600 -199.9/99.9 32 JPT100 °C -200/600 -199.9/99.9 33 JPT100 °F -328/152 -199.9/99.9 35 060 mV Linear -1999/99.9 -199.9/99.9 35 060 mV Linear -1999/99.9 -199.9/99.9 <tr< td=""><td>3</td><td>TC K</td><td>°F</td><td>32/2372</td><td>32.0/999.9</td><td></td></tr<>	3	TC K	°F	32/2372	32.0/999.9		
5 TC R °F 32/3182 32.0/999.9 6 TC S °C 0/1750 0.0/1750.0 7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/400.0 9 TC T °F -328/752 -199.9/752.0 10 TC N °C 0/1300 0.0/1300.0 11 TC N °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 30 PT100 °C -200/850 -199.9/99.9 32 JPT100 °C -200/600 -199.9/99.9 32 JPT100 °C -200/600 -199.9/99.9 33 JPT100 °F -328/112 -199.9/99.9 34 060 mV Linear -1999/999.9 -199.9/99.9 35 060 mV Linear Custom linearization Custom lineariza	4	TC R	°C	0/1750	0.0/1750.0		
6 TC S °C 0/1750 0.0/1750.0 7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/400.0 9 TC T °F -328/752 -199.9/752.0 10 TC N °C 0/1300 0.0/1300.0 11 TC N °C 0/1300 0.0/1300.0 11 TC N °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 29 TC custom custom custom 30 PT100 °C -200/850 -199.9/999.3 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °F -328/1112 -199.9/999.9 33 JPT100 °F -328/1112 -199.9/999.9 34 060 mV Linear Custom linearization Custom linearization	5	TC R	°F	32/3182	32.0/999.9		
7 TC S °F 32/3182 32.0/999.9 8 TC T °C -200/400 -199.9/400.0 9 TC T °F -328/752 -199.9/752.0 10 TC N °C 0/1300 0.0/1300.0 11 TC N °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 29 TC custom custom custom 30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/909.9 33 JPT100 °F -328/1112 -199.9/999.9 34 060 mV Linear -1999/999.9 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV Linear -1999/999.9 <td>6</td> <td>TC S</td> <td>°C</td> <td>0/1750</td> <td>0.0/1750.0</td> <td></td>	6	TC S	°C	0/1750	0.0/1750.0		
8 TC T °C -200/400 -199.9/400.0 -199.9/400.0 -199.9/752.0 9 TC T °F -328/752 -199.9/752.0 -10 TC N °C 0/1300 0.0/1300.0 11 TC N °F 32/2372 32.0/999.9 -28 TC custom custom custom 29 TC custom custom custom custom custom Sensor: RTD 3-Wire Without Dec. Point With Dec. Point 30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/999.9 Sensor: 50mV Voltage Type Probe Type Scale Without Dec. Point With Dec. Point 34 060 mV Linear -1999/9999 -199.9/999.9 35 060 mV Linear -1999/9999 -199.9/999.9 37 1260 mV Linear	7	TC S	°F	32/3182	32.0/999.9		
9 TC T °F -328/752 -199.9/752.0 10 TC N °C 0/1300 0.0/1300.0 11 TC N °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 29 TC custom custom custom Sensor: RTD 3-Wire Type Probe Type Scale Without Dec. Point With Dec. Point 30 PT100 °C -200/850 -199.9/99.9 32 JPT100 °C -200/600 -199.9/999.9 32 JPT100 °C -200/600 -199.9/999.9 Sensor: 50mV Voltage Type Probe Type Scale Without Dec. Point With Dec. Point 34 060 mV Linear -1999/9999 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization <t< td=""><td>8</td><td>TC T</td><td>°C</td><td>-200/400</td><td>-199.9/400.0</td><td></td></t<>	8	TC T	°C	-200/400	-199.9/400.0		
10 TC N °C 0/1300 0.0/1300.0 11 TC N °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 29 TC custom custom custom Sensor: RTD 3-Wire Type Probe Type Scale Without Dec. Point With Dec. Point 30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/999.9 33 JPT100 °F -328/1112 -199.9/999.9 Sensor: 50mV Voltage Type Probe Type Scale Without Dec. Point With Dec. Point 34 060 mV Linear -1999/999.9 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV <td>9</td> <td>TC T</td> <td>°F</td> <td>-328/752</td> <td>-199.9/752.0</td> <td></td>	9	TC T	°F	-328/752	-199.9/752.0		
11 TC N °F 32/2372 32.0/999.9 28 TC custom custom custom 29 TC custom custom custom 30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °F -328/1562 -199.9/999.9 33 JPT100 °F -328/1112 -199.9/999.9 Sensor: 50mV Voltage - -199.9/999.9 -199.9/999.9 Sensor: 50mV Voltage - - -199.9/999.9 35 060 mV Linear -1999/999.9 -199.9/999.9 36 1260 mV Linear Custom linearization Custom linearization Sensor: 20mA Current - - - - Type Probe Type Scale Without Dec. Point With Dec. Point 38 020 mA linear -1999/999.9 -199.9/999.9 39 020 mA lin	10	TC N	°C	0/1300	0.0/1300.0		
28 TC custom custom custom 29 TC custom custom custom Sensor: RTD 3-Wire Vith Dec. Point With Dec. Point 30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/909.9 33 JPT100 °C -200/600 -199.9/999.9 Sensor: 50mV Voltage - -199.9/999.9 -199.9/999.9 Sensor: 50mV Voltage - - -199.9/999.9 35 060 mV Linear -1999/999.9 -199.9/999.9 36 1260 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization Sensor: 20mA Current - - - - Type Probe Type Scale Without Dec. Point With Dec. Point 38 020 mA	11	TC N	°F	32/2372	32.0/999.9		
29 TC custom custom custom Sensor: RTD 3-Wire Type Probe Type Scale Without Dec. Point With Dec. Point 30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/909.9 33 JPT100 °C -200/600 -199.9/999.9 Sensor: 50mV Voltage Voltage Vith Dec. Point With Dec. Point 34 060 mV Linear -1999/999.9 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization 38 020 mA linear -1999/999.9 -199.9/999.9 39 020 mA linear Custom linearization Custom linearization 40 420 mA linear Custom linearization Custom linearization 41	28	TC	custom	custom	custom		
Sensor: RTD 3-Wire Type Probe Type Scale Without Dec. Point With Dec. Point 30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/999.9 33 JPT100 °F -328/1112 -199.9/999.9 Sensor: 50mV Voltage Voltage Without Dec. Point With Dec. Point 34 060 mV Linear -1999/9999 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization 36 1260 mV Linear -1999/999.9 -199.9/999.9 37 1260 mV Linear Custom linearization Custom linearization 38 020 mA linear -1999/999.9 -199.9/999.9 -199.9/999.9 39 020 mA linear Custom linearization Custom lineari	29	TC	custom	custom	custom		
Type Probe Type Scale Without Dec. Point With Dec. Point 30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/999.9 33 JPT100 °C -200/600 -199.9/999.9 Sensor: SomV Voltage Voltage Type Probe Type Scale Without Dec. Point With Dec. Point 34 060 mV Linear -1999/9999 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization Sensor: 20mA linear -1999/9999 -199.9/999.9 37 1260 mV Linear -1999/9999 -199.9/999.9 39 020 mA linear Custom linearization	Senso	or: RTD 3-V	/ire				
Type Probe Type Scale Without Dec. Point With Dec. Point 30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/909.9 33 JPT100 °F -328/1112 -199.9/999.9 Sensor: SomV Voltage Voltage Vith Dec. Point With Dec. Point 34 060 mV Linear -1999/9999 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization Sensor: 20mA Linear Custom linearization Custom linearization 38 020 mA linear -1999/9999 -199.9/999.9 39 020 mA linear Custom linearization Custom linearization 40 420 mA linear Custom linearization Custom linearization 41							
30 PT100 °C -200/850 -199.9/850.0 31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/900.0 33 JPT100 °F -328/1112 -199.9/999.9 Sensor: 50mV Voltage - - -199.9/999.9 Sensor: 50mV Voltage Without Dec. Point With Dec. Point 34 060 mV Linear -1999/999.9 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV Linear -1999/999.9 -199.9/999.9 37 1260 mV Linear Custom linearization Custom linearization Sensor: 20mA Linear Custom linearization Custom linearization 38 020 mA linear -1999/999.9 -199.9/999.9 39 020 mA linear Custom linearization Custom linearization 40 420 mA linear Custom linearization	Туре	Probe Type	Scale	Without Dec. Po	int With Dec. Point		
31 PT100 °F -328/1562 -199.9/999.9 32 JPT100 °C -200/600 -199.9/600.0 33 JPT100 °F -328/1112 -199.9/999.9 Sensor: 50mV Voltage Without Dec. Point With Dec. Point 34 060 mV Linear -1999/9999 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization Sensor: 200 mA Linear Custom linearization Custom linearization 38 020 mA linear -1999/9999 -199.9/999.9 39 020 mA linear Custom linearization Custom linearization 40 420 mA linear Custom linearization Custom linearization 41 420 mA linear Custom linearization Custom linearization	30	PT100	°C	-200/850	-199.9/850.0		
32 JPT100 °C -200/600 -199.9/600.0 33 JPT100 °F -328/1112 -199.9/999.9 Sensor: 50mV Voltage Type Probe Type Scale Without Dec. Point With Dec. Point 34 060 mV Linear -1999/9999 -199.9/999.9 35 060 mV Linear Custom linearization Custom linearization 36 1260 mV Linear Custom linearization Custom linearization 37 1260 mV Linear Custom linearization Custom linearization Sensor: 20mA Linear -1999/9999 -199.9/999.9 37 1260 mV Linear Custom linearization Custom linearization Sensor: 20mA Linear -1999/9999 -199.9/999.9 39 020 mA Linear Custom linearization Custom linearization 40 420 mA Linear Custom linearization Custom linearization 5 Scale Without Dec. Point	31	PT100	°F	-328/1562	-199.9/999.9		
33JPT100°F-328/1112-199.9/999.9Sensor: 50mV VoltageTypeProbe TypeScaleWithout Dec. PointWith Dec. Point34060 mVLinear-1999/9999-199.9/999.935060 mVLinearCustom linearizationCustom linearization361260 mVLinear-1999/9999-199.9/999.9371260 mVLinearCustom linearizationCustom linearizationSensor: 20mA CurrentTypeProbe TypeScaleWithout Dec. PointWith Dec. Point38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearization40420 mAlinearCustom linearizationCustom linearization41420 mAlinearcustom linearization4201 Vlinear4301 VlinearCustom linearization44200 mv.1 Vlinear-1999/999945200 mv.1 VlinearCustom linearization	32	JPT100	°C	-200/600	-199.9/600.0		
Sensor: 50mV VoltageTypeProbe TypeScaleWithout Dec. PointWith Dec. Point34060 mVLinear-1999/9999-199.9/999.935060 mVLinearCustom linearizationCustom linearization361260 mVLinear-1999/9999-199.9/999.9371260 mVLinearCustom linearizationCustom linearizationSensor: 20mA CurrentTypeProbe TypeScaleWithout Dec. PointWith Dec. Point38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearization40420 mAlinearCustom linearizationCustom linearization41420 mAlinearCustom linearizationCustom linearizationCustom linearizationCustom linearizationCustom linearization41420 mAlinearCustom linearizationCustom linearization <tr< td=""><td>33</td><td>JPT100</td><td>°F</td><td>-328/1112</td><td>-199.9/999.9</td><td></td></tr<>	33	JPT100	°F	-328/1112	-199.9/999.9		
TypeProbe TypeScaleWithout Dec. PointWith Dec. Point34060 mVLinear-1999/9999-199.9/999.935060 mVLinearCustom linearization361260 mVLinear-1999/9999-199.9/999.9371260 mVLinearCustom linearizationCustom linearizationCustom VLinearCustom linearizationCustom VLinearCustom linearizationCustom VLinearCustom linearizationCustom VLinearCustom linearizationCustom VLinearCustom VLinearCustom Vith Dec. PointWithout Dec. PointWith Dec. PointWithout Dec. PointWithout Dec. PointWithout Dec. PointWithout Dec. PointWithout Dec. PointWithout Dec. PointVoltageTypeProbe TypeScaleWithout Dec. PointWith Dec. PointVoltageType Probe TypeScaleWithout Dec. PointWith Dec. Point	Sensor: 50mV Voltage						
TypeProbe TypeCodeWithout Dec. FointWith Dec. Foint34060 mVLinear-1999/9999-199.9/999.935060 mVLinearCustom linearization361260 mVLinear-1999/9999-199.9/999.9371260 mVLinearCustom linearizationSensor: 20mA CurrentTypeProbe TypeScaleWithout Dec. PointWith Dec. Point38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearization40420 mAlinearCustom linearization41420 mAlinearCustom linearizationCustom linearizationCustom linearizationCustom linearization41420 mAlinearCustom linearizationCustom linearizationC	Type	Prohe Type	Scale	Without Dec. Po	int With Dec Point		
34060 mVLinearCustom linearizationCustom linearization35060 mVLinearCustom linearizationCustom linearization361260 mVLinear-1999/9999-199.9/999.9371260 mVLinearCustom linearizationCustom linearizationSensor: 20mA CurrentType Probe Type Scale Without Dec. Point With Dec. Point38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearizationCustom linearization40420 mAlinear-1999/9999-199.9/999.941420 mAlinearCustom linearizationCustom linearizationSensor: 1V VoltageType Probe Type Scale Without Dec. PointWith Dec. Point4201 Vlinear-1999/9999-199.9/999.94301 VlinearCustom linearization44200 mv.1 Vlinear-1999/9999-199.9/999.945200 mv.1 VlinearCustom linearization	3/	0.60 mV	Linear	_1000/0000	_100 0/000 0		
35000 mVLinearOustom inearizationOustom inearization361260 mVLinear-1999/9999-199.9/999.9371260 mVLinearCustom linearizationCustom linearizationSensor: 20mA CurrentTypeProbe TypeScaleWithout Dec. PointWith Dec. Point38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearization40420 mAlinearCustom linearization41420 mAlinearCustom linearizationCustom linearizationCustom linearizationCustom linearization41420 mAlinearCustom linearizationCustom linearizationCusto	35	000 mV	Linear	Custom linearizati	ion Custom linearization	n	
301200 mVLinear1999/9999199.9999371260 mVLinearCustom linearizationCustom linearizationSensor: 20mA CurrentTypeProbe TypeScaleWithout Dec. PointWith Dec. Point38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearization40420 mAlinear-1999/9999-199.9/999.941420 mAlinearCustom linearizationCustom line	36	12 60 mV	Linear	1000/0000			
Sensor: 20mA CurrentTypeProbe TypeScaleWithout Dec. PointWith Dec. Point38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearization40420 mAlinear-1999/9999-199.9/999.941420 mAlinearCustom linearizationCustom Linea	37	1200 mV	Linear	Custom linearizati	ion Custom linearization	n	
Sensor: 20mA CurrentTypeProbe TypeScaleWithout Dec. PointWith Dec. Point38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearizationCustom linearization40420 mAlinear-1999/9999-199.9/999.941420 mAlinearCustom linearizationCustom linearizationSensor: 1V VoltageTypeProbe TypeScaleWithout Dec. PointWith Dec. Point4201 Vlinear-1999/9999-199.9/999.94301 VlinearCustom linearization44200 mv.1 Vlinear-1999/9999-199.9/999.945200 mv.1 VlinearCustom linearization	07	1200 1110	Eincar				
TypeProbe TypeScaleWithout Dec. PointWith Dec. Point38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearization40420 mAlinear-1999/9999-199.9/999.941420 mAlinearCustom linearizationCustom linearization	Sense	or: 20mA C	urrent				
38020 mAlinear-1999/9999-199.9/999.939020 mAlinearCustom linearizationCustom linearization40420 mAlinear-1999/9999-199.9/999.941420 mAlinearCustom linearizationCustom linearizationSensor: 1V VoltageTypeProbe TypeScaleWithout Dec. PointWith Dec. Point4201 Vlinear-1999/9999-199.9/999.94301 VlinearCustom linearization44200 mv1 Vlinear-1999/9999-199.9/999.945200 mv1 VlinearCustom linearization	Туре	Probe Type	Scale	Without Dec. Po	int With Dec. Point		
39020 mAlinearCustom linearizationCustom linearization40420 mAlinear-1999/9999-199.9/999.941420 mAlinearCustom linearizationCustom linearizationSensor: 1V VoltageTypeProbe TypeScaleWithout Dec. PointWith Dec. Point4201 Vlinear-1999/9999-199.9/999.94301 VlinearCustom linearization44200 mv1 Vlinear-1999/9999-199.9/999.945200 mv1 VlinearCustom linearization	38	020 mA	linear	-1999/9999	-199.9/999.9		
40420 mAlinear-1999/9999-199.9/999.941420 mAlinearCustom linearizationCustom linearizationSensor: 1V VoltageTypeProbe TypeScaleWithout Dec. PointWith Dec. Point4201 Vlinear-1999/9999-199.9/999.94301 VlinearCustom linearization44200 mv1 Vlinear-1999/9999-199.9/999.945200 mv1 VlinearCustom linearization	39	020 mA	linear	Custom linearizati	ion Custom linearization	n	
41420 mAlinearCustom linearizationCustom linearizationSensor: 1V VoltageTypeProbe TypeScaleWithout Dec. PointWith Dec. Point4201 Vlinear-1999/9999-199.9/999.94301 VlinearCustom linearization44200 mv1 Vlinear-1999/9999-199.9/999.945200 mv1 VlinearCustom linearization	40	420 mA	linear	-1999/9999	-199.9/999.9		
Sensor: 1V VoltageTypeProbe TypeScaleWithout Dec. PointWith Dec. Point4201 Vlinear-1999/9999-199.9/999.94301 VlinearCustom linearization44200 mv1 Vlinear-1999/9999-199.9/999.945200 mv1 VlinearCustom linearization	41	420 mA	linear	Custom linearizati	ion Custom linearization	n	
TypeProbe TypeScaleWithout Dec. PointWith Dec. Point4201 Vlinear-1999/9999-199.9/999.94301 VlinearCustom linearization44200 mv1 Vlinear-1999/9999-199.9/999.945200 mv1 VlinearCustom linearization	Sense	or: 1V Volta	ge				
4201 Vlinear-1999/9999-199.9/999.94301 VlinearCustom linearizationCustom linearization44200 mv1 Vlinear-1999/9999-199.9/999.945200 mv1 VlinearCustom linearization	Туре	Prob <u>e</u> Type	Scale	Without Dec. Pc	bint With Dec. Point		
4301 VlinearCustom linearizationCustom linearization44200 mv1 Vlinear-1999/9999-199.9/999.945200 mv1 VlinearCustom linearizationCustom linearization	42	01 V	linear	-1999/9999 -199 9/999			
44 200 mv1 V linear -1999/9999 -199.9/999.9 45 200 mv1 V linear Custom linearization Custom linearization	43	01 V	linear	Custom linearization Custom lineariz		n	
45 200 mv1 V linear Custom linearization Custom linearization	44	200 mv. 1 V	linear	-1999/9999 -199.0/000			
	45	200 mv1 V	linear	Custom linearizat	tion Custom linearization	n	
Sensor: Custom	Sons	or: Custom					
Time Drohe Time Seele Without Dee Deist With Dee Deist		Drobe Ture	Seele		Dint With Dog Deint	+	
40 Out 00mA	type		Scale			L	
40 Cust. 2011A 1999/9999 - 199.9/999.9	40	Cust 20mA	-	-1999/9999	- 199.9/999.9		
47 Cust. 2011A - Custom inearization Custom inearization	47	Cust Com	-			חנ	
40 Cust 60mV - Custom linearization Custom linearization	40	Cust 60mW	,	Custom linearizat	tion Custom linearization	h	

custom

custom

99

50 PT100-JPT

Input Off

_

403	dP.S	R/W	Decimal point position for input scale				
Specifies the number of decimal figures used to represent the input signal value:							
for exar	nple, 875.4 (°C)	with dP.S	S = 1.				

	Decimal Point Table	
	Format	
0	XXXX	
1	XXX.X	
2	xx.xx (*)	
3	x.xxx (*)	
(*) No	t available for TC, RTD probes	

Scale Limits

401	Lo.S	R/W	Minimum scale limit of main input	Minmax scale of input selected in tyP		0
-----	------	-----	--------------------------------------	---	--	---

Engineering value associated to minimum level of the signal generated by the sensor connected to the input: for example 0 ($^{\circ}$ C) with type K thermocouple.

402

Engineering value associated to maximum level of the signal generated by the sensor connected to the input: for example 1,300 (°C) with type K thermocouple.

Setting the Offset

Lets you set a value in scale points that is algebraically added to the value measured by the input sensor.

Read State

0 470	P.V.	R	Read of engineering value of process variable (PV)						
85	Err	R	Self-diagnostic error code of main input		Error Code Table				
				0	No Error				
 For custom linearization (tYP = 28 or 29): LO is signaled with input values below Lo.S or at minimum calibration value. HI is signaled with input values above Lo.S or at maximum calibration value. 				1	Lo (process variable value is < Lo.S)				
				2	2 Hi (process variable value is > di Hi.S)				
				3	ERR [third wire interrupted for PT100 or input values below minimum limits (ex.: for CT with connection error)]				
					SBR (probe interrupted or input values beyond max. limits)				
349	D.P.V.	R	Read of engineering value of process variable (PV) filtered						

Advanced Settings

Input Filter

24	FLE	R/W	Low pass digital filter on input signal	0.020.0 sec.		0.1
~ .			eu		1 12 11	

Sets a low pass digital filter on the main input, running the average value read in the specified time interval. If = 0 exclude the average filter on the sampled values.

179 FLd R/W Digital filter on oscillations of input signal	0 9.9 scale points	0.1
---	-----------------------	-----

Introduces a hysteresis zone on the input signal value within which the signal is considered unchanged, thereby increasing its apparent stability.

Linearization of input signal

The modular power controller lets you set a custom linearization of the signal acquired by the main input for signals coming from sensors and for signals coming from custom thermocouples.

Linearization is performed with 33 values (S00 ... S32: 32 segments).

S33, S34, S35 are an additional 3 values to be inserted in case of linearization with custom CT.

Signals from Sensors

For signals coming from sensors, linearization is done by dividing the input scale into 32 zones of equal dV amplitude, where:

dV = (full-scale value - start of scale value) / 32

Point 0 (origin) corresponds to the engineering value attributed to the minimum value of the input signal.

Subsequent points correspond to the engineering values attributed to input values equal to:

Input value (k) = Minimum input value + k * dVwhere k is the order number of the linearization point

The engineering values calculated in this way by the user can be set by means of the following parameters.

86	5.00	R/W	Engineering value attributed to Point 0 (minimum value of input scale)		(-1999 9999)	0.0
87	50.1	R/W	Engineering value attributed to Point 1		(-1999 9999)	0.0
			Intermediate Vales			
118	5.32	R/W	Engineering value attributed to Point 32 (max. value of input scale)		(-1999 9999)	0.0

NOTE: For correct signaling of error state (Lo, Hi), the value set in S.00 must coincide with limit Lo.S and the value set in S.32 with limit Hi.S.

Signals from Sensors

293	5.33	R/W	Engineering value attributed to minimum value of the input scale.	mV start of scale (- 19.99 99.99)
294	5.34	R/W	Engineering value attributed to maximum value of the input scale.	mV ffull scale (S.33+1) 99.99)
295	5.35	R/W	Engineering value attributed to input signal corresponding to 50°C.	mV a 50° C (- 1.999 9.999)

Functional Diagram

Current Value In Load

The RMS current value is read in variable Ld.A of each zone.

If zone 1 has a 3-phase load, variable Ld.At contains the average value of the three RMS currents. The Ld.A of the first three zones contain the RMS current value on lines L1, L2 and L3, respectively.

Accuracy is better than 1% in start modes ZC, BF and HSC.

Accuracy is better than 3% in PA mode with conduction angle >90°, and better than 10% for lower conduction angles.

The circulating current in the load is acquired with a 0.2ms sampling time.

In addition, there are the following parameters for a zone with single-phase load:

I.tA1 instantaneous ammeter value I1on current with active control o.tA1 ammeter input offset correction Ft.tA ammeter input digital filter

There are also the following parameters if zone 1 has a three-phase load:

I.tA1, I.tA2 and I.tA3 instantaneous ammeter value on line L1, L2 and L3 I1on, I2on and I3on current with active control

o.tA1, o.tA2 and o.tA3 ammeter input offset correction on line L1, L2 and L3

Ft.tA ammeter input digital filter

If diagnostics detects a fault condition on the load, the red ER LED will flash in synch with yellow LED O1 or O2 or O3 for the zone in question.

The condition POWER FAULT in OR with HB alarm can be assigned to an alarm or identified in the state of a bit in variables STATUS, STATUS1, STATUS2 and STA-TUS3.

In STATUS3 you can identify the condition that activated the POWER_FAULT alarm.

POWER_FAULT diagnostics is configurable with parameter hd.2, with which even just a part may be enabled

SSR SHORT SSR module in short circuit

NO VOLTAGE power failure or interrupted fuse

NO CURRENT due to SSR module open or fuse or load interrupted

For alarm HB (load partially interrupted), refer to the specific section of this manual.

The default value of the maximum limit or ammeter fullscale depends on the model:

Model	H.tA
40A	80.0
60A	120.0
100A	200.0
150A	300.0
200A	400.0
250A	500.0
300A	600.0
400A	800.0
600A	1200
External CT	1000.0

Scale Limits

746	158 C	R	Minimum limit of CT ammeter input scale (phase 1)		
747	LE85	R	Minimum limit of CT ammeter input scale (phase 2)	with 3-Phase Load	
748	LEA3	R	Minimum limit of CT ammeter input scale (phase 3)	with 3-Phase Load	
405	HER I	R	Minimum limit of CT ammeter input scale (phase 1)		
413	HF85	R	Minimum limit of CT ammeter input scale (phase 2)	with 3-Phase Load	
414	HES3	R	Minimum limit of CT ammeter input scale (phase 3)	with 3-Phase Load	

Setting the Offset

220	otA (R/W	Offset correction CT input (phase 1)	-99.999.9 Scale points		0.0 zone 1	0.0 zone 2	0.0 zone 3
415	o£82	R/W	Offset correction CT input (phase 2)	-99.999.9 Scale points	With 3-Phase Load	0.0		
416	oER3	R/W	Offset correction CT input (phase 3)	-99.999.9 Scale points	With 3-Phase Load	0.0		

External CT

339	rt81	R/W	Offset correction for external CT input		1655		200 zone 1	200 zone 2	200 zone 3
-----	------	-----	--	--	------	--	---------------	---------------	---------------

Read State

227 473-139-755	IER (R	Instantaneous CT ammeter input value (phase 1)	
490 494	1F85	R	Instantaneous CT ammeter input value (phase 2)	With 3-Phase Load
491 495	1E03	R	Instantaneous CT ammeter input value (phase 3)	With 3-Phase Load
468	Hon	R	CT filtered ammeter input value with output activated (phase 1)	
498	12on	R	CT filtered ammeter input value with output activated (phase 2)	With 3-Phase Load
499	Bon	R	CT filtered ammeter input value with output activated (phase 3)	With 3-Phase Load
709	IERP	R	Peak ammeter input during phase softstart ramp	
716	coSF	R	Power factor in hundredths	
753	LdA	R	Current RMS on load	
754	LGRF	R	Current RMS on 3-phase load	

Advanced Settings

Input Filter

219	FE.E8	R/W	CT input digital filter	0.0 20 sec	0.1 zone 1	0.1 zone 2	0.1 zone 3
Sets a low pass filter on the CT auxiliary input, running the average of values read in the specified time interval.							
If = 0, e	excludes the	average	e filter on sampled values.				

Functional Diagrams

Monophase load

Threephase load

Voltage Value on Load

RMS voltage is read in variable Ld.V of each zone. If zone 1 has a 3-phase load, variable Ld.V.t in the first zone contains the average RMS value of voltages on three load L1, L2 and L3.

Voltage on the load is acquired with sampling on each cycle, 20ms at 50Hz (16.6ms at 60Hz). Accuracy is better than 1%.

The istantaneous RMS voltage value and with activated output, for single zone can be read in the variables Ld.VIS and Ld.Von; Ld.Von values are filtered by Ft.tVL (with option VLOAD) or Ft.tV (without option VLOAD).

If the option VLOAD is not present, the Load RMS voltage value is calculated from the line voltage and from the output power values.

Read State

751	Ld.V	R	Voltage on load
710	Latiniz	R	Load voltage instantaneous
711	Ld.Von	R	Load voltage with output activated
752	LGN'F	R	R Voltage on 3-phase load

if the option VLOAD is present there are available the following parameters:

Scale Limit

439	LE.VL	R	Minimum limit of TV_LOAD voltmeter input scale
443	HE.VL	R	Maximum limit of TV_LOAD voltmeter input scale

Setting the Offset

444	ot.VL R/W	Offset correction for TV_LOAD input		-99.999.9 scale points		0.0 zone 1	0.0 zone 2	0.0 zone 3
-----	-----------	--	--	---------------------------	--	---------------	---------------	---------------

Advanced Settings

Input Filter

Functional Diagram

Single-Phase Load without VLOAD option

Functional Diagram

phase 3

Three-Phase Load without VLOAD option

(Ft.tVL zone 3)

media

Variable Ld.Vt (*)

(*) with 3-Phase, 2-Leg command the zone 3 Ld V value is calculated as an average of the zone 1 and zone 2 Ld.V values

(o.tVL zone 3)

Line Voltage Value

There are the following parameters if zone 1 has a single-phase load:

I.tV1 instantaneous voltmeter value of line

I.VF1 filtered voltmeter value

o.tV1 voltmeter input offset correction

Ft.tV voltmeter input digital filter

There are the following parameters if zone 1 has a 3-phase load:

I.tV1, I.tV2 and I.tV3, the instantaneous voltmeter value on line L1, L2 and L3, respectively.

RMS voltage values refer to voltage between 1/L1 and 3/L2 terminals.

Scale Limits

I.VF1, I.VF2 and I.VF3 filtered voltmeter value on line L1, L2 and L3

o.tV1, o.tV2 and o.tV3 voltmeter input offset correction on line L1, L2 and L3.

Each phase has a voltage presence check that shuts off the module in case of incorrect values.

3-phase loads have an imbalance diagnostic, with consequent shut-down of the load and signal via LEDs.

A "voltage status" parameter contains information on the status of line voltage, including mains frequency identified 50/60Hz.

3-phase loads have diagnostics for correct phase connection, lack of a voltage, or imbalance of the three line voltages.

453	LENT	R	Minimum limit of TV voltmeter input scale (phase 1)		
454	LENS	R	Minimum limit of TV voltmeter input scale (3-phase, 2-leg)	with 3-Phase Load	
455	сеиз	R	Minimum limit of TV voltmeter input scale (3-phase, 3-leg)	with 3-Phase Load	
410	нерт	R	Maximum limit of TV voltmeter input scale (phase 1)		
417	HF NS	R	Minimum limit of TV voltmeter input scale (3-phase, 2-leg)	with 3-Phase Load	
418	HE VB	R	Minimum limit of TV voltmeter input scale (3-phase, 3-leg)	with 3-Phase Load	

Setting the Offset

411	o£U	R/W	Offset correction TV input (phase 1)	-99.999.9 Scale points		0.0 zone 1	0.0 zone 2	0.0 zone 3
419	o£82	R/W	Offset correction CT input (3-phase, 2-leg)	-99.999.9 Scale points	With 3-Phase Load	0.0		
420	otU3	R/W	Offset correction CT input (3-phase, 3leg)	-99.999.9 Scale points	With 3-Phase Load	0.0		

Read State

232 485	1601	R	Value of voltmeter input (phase 1)		
492	1605	R	Value of voltmeter input (3-phase, 2-leg)		With 3-Phase Load
493	1E03	R	Value of voltmeter input (3-phase, 3-leg)		With 3-Phase Load
322	HZF H	R	Value Filtered of voltmeter input (phase 1)		
496	1765	R	Value Filtered of voltmeter input (3-phase, 2-leg)		With 3-Phase Load
497	HVF I	R	Value Filtered of voltmeter input (3-phase, 3-leg)		With 3-Phase Load

700					Table Voltage Status
102			voltage status	Bit	
				0	frequency_warning
				1	10% umbalanced_line_warning
				2	20% umbalanced_line_warning
				3	30% umbalanced_line_warning
				4	rotation 123_error
				5	triphase_missing_line_error
				6	60Hz
315	8-89	Е	Voltage frequnecy in tenths of Hz		

Advanced Settings

Input Filter

412	<u> </u>	R/W	Digital filter for voltmeter transformer TV input	0.020.0 sec		2.0 zone 1	2.0 zone 2	2.0 zone 3
-----	----------	-----	--	-------------	--	---------------	---------------	---------------

Sets a low pass filter on the auxiliary TV input, running the average of values read in the specified time interval. If = 0, excludes the average filter on sampled values.

Functional Diagram

Line Voltage Value Single Phase

Power On Load

Power on the load in each zone is read in variable Ld.P and the corresponding energy value in variables Ld.E1 and Ld.E2.

These energy values show the value accumulated since the first power on or since the last reset (commands at bits 114 and 115); non-volatile memory is updated every two hours and the disconnection of the power off. Load impedance in each zone is read in variable Ld.I.

If zone 1 has a 3-phase load, variable Ld.P.t shows power and Ld.I.t total impedance, the corresponding energy value in variables Ld.E1.t and Ld.E2.t.

Note that for loads such as IR lamps, impedance can vary greatly based on the power transferred to the load.

880 719 LSW only	LdP	R	Power on load	Data in DWORD (32 bit) format for address 880* LSW data in WORD (16 bit) format for address 719*
882 720 LSW only	ԼՅԲԷ	R	Power on Load 3-Phase	Data in DWORD (32 bit) format for address 882 LSW data in WORD (16 bit) format for address 720
749	Ld I	R	Impedance on load	
750	Ld IE	R	Impedance on load 3-phase	
531	LdE (R	Energy on load	Data in DWORD (32 bit) format
541	L d E I E	R	Energy on 3-phase load	Data in DWORD (32 bit) format
510	1985	R	Energy on load	Data in DWORD (32 bit) format
541	135 JF	R	Energy on 3-phase load	Data in DWORD (32 bit) format
114 bit	L dE l	R/W	OFF = - ON = Reset Ld.E1	
115 bit	1985	R/W	OFF = - ON = Reset Ld.E1	

Functional Diagram

Single-phase load

Functional Diagram

3-phase load

(*) with BI-PHASE command the Ld.A value of zone 3 is gained like average of the Ld.A values of zones 1 and 2

Auxiliary Analog Inputs (LIN/TC)

The CFW has 4 inputs defined as auxiliary (IN2 for zone 1, IN3 for zone 2, IN4 for zone 3, IN5 for zone 4) to which TC or linear temperature sensors can be connected.

The presence of these inputs is optional

Input values are available in variables In.2/In.3/In.4/In.5 and can be read or used to activate assigned alarm signals.

When an auxiliary input is present, you have to define the following parameters:

- sensor type (AI.2, AI.3, AI.4, AI.5);
- . its function (tP.2); (only for IN2 input)
- decimal point position (dP.2, HS.3 LS.3, HS.4
- LS.4, HS.5 LS.5);
- scale limits (HS.2 LS.2);
- offset correction value (oFS.2, oFS.3, oFS.4, oFS.5).

If the sensor is a thermocouple, the minimum and maximum limits can be defined in the specific scale of the sensor used. The range of values settable for alarm setpoints depends on these limits.

There is also a digital filter (Flt.2, Flt.3, Flt.4, Flt.5,) that can be used to reduce noise on the input signal.

0

		Select type of auxiliary sensor			Auxiliary Input Sensors							
194	81.2	R/W	input 2	Туре	Type of Probe/Sensor	W/O Decimal Pt	With Decimal Pt					
				1	TC J °F	32/1832	32.0/999.9					
FF0	010		Select type of auxiliary sensor	2	TC K °C	0/1300	0.0/999.9					
553	<u> </u>	R/VV	input 3	3	TC K °F	32/2372	32.0/999.9					
				4	TC R °C	0/1750	0.0/999.9					
EEA	010		Select type of auxiliary sensor	5	TC R °F	32/3182	32.0/999.9					
554	ר.וח	H/VV	input 4	6	TC S °C	0/1750	0.0/999.9					
				7	TC S ° F	32/3182	32.0/999.9					
EEE	orc		Select type of auxiliary sensor	8	TC T °C	-200/400	-199.9/400.0					
555	n	H/VV	input 5	9	TC T °F	-328/752	-199.9/752.0					
				34	060 mV	-1999/9999	-199.9/999.9					
				35	060 mV	Custom linearization	Custom linearization					
				36	1260 mV	-1999/9999	-199.9/999.9					
				37	1260 mV	Custom linearization	Custom linearization					

99 Input Off

181	£P.2	R/W	Definition of auxiliary analog input function 2
-----	------	-----	---

Auxiliary Input Functions							
Limits for setting LS.2 & HS.2							
tP.2	Aux. Input Function	Min.	Max.	0			
0	None	-1999	9999				
1	Remote setpoint	Absolute Lo.S, relative -999	Absoluto Hi.S, relative +999				
2	Manual analog remote	-100.0%	+100.0%				
3	Reset power analogic	-100.0%	+100.0%				
8	Analogic remote manu- al from main input						
16	Remote manual from analogic input						
32	32 Remote manual from PWM input						
	(*) see: Settings (**) see: Controls	– Control Setpoir s –PID Parameter	nt ′s				

677	596	R/W	Decimal point posiction for the auxiliary input scale 2	De
568	689	R/W	Decimal point posiction for the auxiliary input scale 3	0
569	dP4	R/W	Decimal point posiction for the auxiliary input scale 4	1
570	dPS	R/W	Decimal point posiction for the auxiliary input scale 5	3

Decir	nal Point Table	0
	Format	0
0	XXXX	U
1	XXX.X	0
2	XX.XX (*)	U
3	x.xxx (*)	0
		U

Specifies the number of decimal figures used to represent the input signal value: for example, 875.4 (°C) with dP.S: = 1

Scale Limits

404	122	R/W	Minimum limit of auxiliary input scale 2	Minmax input scale selected in AI.2 and tP.2	0
556	LS3	R/W	Minimum limit of auxiliary input scale 3	Minmax input scale selected in AI.3	0
557	LSH	R/W	Minimum limit of auxiliary input scale 4	Minmax input scale selected in Al.4	0
558	LSS	R/W	Minimum limit of auxiliary input scale 5	Minmax input scale selected inAI.5	0
603	H25	R/W	Minimum limit of auxiliary input scale 2	Minmax input scale selected in AI.2 and tP.2	1000
603 559	X52 X53	R/W R/W	Minimum limit of auxiliary input scale 2 Minimum limit of auxiliary input scale 3	Minmax input scale selected in AI.2 and tP.2 Minmax input scale selected in AI.3	1000 1000
603 559 560		R/W R/W R/W	Minimum limit of auxiliary input scale 2 Minimum limit of auxiliary input scale 3 Minimum limit of auxiliary input scale 4	Minmax input scale selected in Al.2 and tP.2 Minmax input scale selected in Al.3 Minmax input scale selected in Al.4	1000 1000 1000

Setting the Offset

605	oFS2	R/W	Offset for auxiliary input correction 2	-999999 Scale points	0
565	٥٤٤٦	R/W	Offset for auxiliary input correction 3	-999999 Scale points	0
566	oFS4	R/W	Offset for auxiliary input correction 4	-999999 Scale points	0
567	oFSS	R/W	Offset for auxiliary input correction 5	-999999 Scale points	0

Read State

602	5nl	R	Value of auxiliary input 2		
547	ln3	R	Value of auxiliary input 3		
548	ln4	R	Value of auxiliary input 4		
549	ln4	R	Value of auxiliary input 5		
606	5-3	R	Error code for self-diagnosis of auxiliary input 2		Error Code Table
550	C_ 3	D	Error code for self-diagnosis of	0	No error
550	L' J	n	auxiliary input 3	1	Lo (value of process variable is $< LS.x$)
			Error code for self-diagnosis of	2	Hi (value of process variable is $>$ HS.x)
551	ይгሣ	R	auxiliary input 4	3	ERR [third wire interrupted for PT100 or input values below minimum limits (ex.: for TC with connection error)]
552	EnS	R	Error code for self-diagnosis of auxiliary input 5	4	SBR (probe interrupted or input values beyond max. limits)

Advanced Settings

Input Filter						
604	FLF5	R/W	Digital filter for auxiliary input 2		0.020.0 sec	0.1
562	FLE3	R/W	Digital filter for auxiliary input 3		0.020.0 sec	0.1
563	FLEM	R/W	Digital filter for auxiliary input 4		0.020.0 sec	0.1
564	FLES	R/W	Digital filter for auxiliary input 5		0.020.0 sec	0.1

Sets a low pass filter on the auxiliary input, running the average of values read in the specified time interval. If = 0, excludes the average filter on sampled values.

Functional Diagram

Digital Inputs (40 - 300A Models)

There are always two inputs. Each input can perform various functions based on the setting of the following parameters:

140	в Ю.	R/W	Digita	I Input Function		Digital Inp	ut Functions Tat	ble	0	Activat	ion
					0	No function	s (input off)				
					1	MAN/AUTO	controller			On leading e	edge
618	ժ Ա.Ժ	R/W	Digital	Input 2 Function	2	LOC / REM			0	On leading e	edge
					3	HOLD				On state	
					4	AL1,, AL4	alarms memor	y reset		On state	
					5	SP1 / SP2 s	election			On leading e	edge
					6	Software on	/off			On leading e	edge
					7	None					
					8	START / ST	OP Selftuning			On leading e	edge (**)
					9	START / ST	OP Autotuning			On leading e	edge (**)
					10	Power_Faul	t alarms memor	y reset		On state	
					11	LBA alarm r	eset			On state	
					12	AL1 AL4 a reset memo	and Power_Fault	t alarms		On state	
					13	Enable at so	oftware ON (*)				
					14	Reference c selected by	alibration of retr Hd.6	roaction			
					15	Calibration	threshold alarm	HS			
					(*)	Ford 15. onl	у				
					(*)	*) IN d 15. alter	native to serial				
694	6 IG 3	R/W	Digital	Input 3 Function		Digital Inpu	t Functions 3 Ta	ıble	0		
					0	No function	s (input off)			l	
					1	PWM Input					
					1						
	_				+ 16	for inverse l	ogic input				
Read	State										
68 bit	State of Inpu	Digital t 1	R	OFF = Digital in R ON = Digital ir	put 1 1put 1	off on					
92 bit	State of Inpu	Digital t 2	R	OFF = Digital in R ON = Digital ir	put 2 put 2	off on					
67 bit	State of	Digital t 3	R	OFF = Digital in B ON = Digital in	put 3	off					
- On	npu			- IT OTT - Digital II	.par o						ſ
317			R	Sate of INPUT DI	G dig	ital inputs	b b b	oit.0 = state oit.1 = state oit.2 = state	e INDIG1 e INDIG2 e INDIG3		
518	In.PV	VM	R_	PWM inp	ut valı	Je		0.010	0.0%		

Functions Related to Digital Inputs

- MAN / AUTO controller.....see AUTO/MAN CONTROL
- LOC / REM.....see SETTING THE SETPOINT
- HOLD see HOLD FUNCTION
- Reset memory latch.....see GENERIC ALARMS AL1 .. AL4
- Select SP1 / SP2 see SETTINGS Multiset
- Software OFF / ON see SOFTWARE SHUTDOWN
- START / STOP Selftuning see SELFTUNING
- START / STOP Autotuning.....see AUTOTUNING
 Calibration of feedback referencesee FEEDBACK
- Calibration of HB alarm setpoint see HB ALARM

Digital Inputs (400 - 600A Models)

There are always two inputs. Each input can perform various functions based on the setting of the following parameters:

140	d KG.	R/W	Digital Input Function		Digital Input Functions Table	Activation	0
				0	No functions (input off)	On leading edge	0
619	ມແລ		Digital Input 2 Eurotion	1	MAN / AUTO controller	On leading edge	U
010	0 'U.C	ע/ <i>א</i>	Digital input 2 Function	4	AL1,, AL4 alarms memory reset	On state	
				6	Software ON/OFF	On leading edge	0
694	4 KC 3	R/W	Digital Input 3 Function	7	PWM input(**)	On leading edge	Ŭ
001	0.0.5	10,00	Bigital input of anotion	10	Power_Fault alarms memory reset	On leading edge	
				12	AL1 AL4 and Power_Fault alarms reset memory	On state	0
				13	Enable at software ON (*)	On state	
712	d 16.4	R/W	Digital Input 4 Function	14	Reference calibration of retroaction selected by Hd.6	On leading edge	
				15	Calibration threshold alarm HB	On leading edge	
				64	Reset alarms FUSE_OPEN / SHORT_CIRCUIT_CURRENT	On state	
				65	Reference calibration of retroaction selected by Hd.6 for CFW-M	On leading edge	
				66	Reference calibration of retroaction selected by Hd.6 for CFW-E1	On leading edge	
				67	Reference calibration of retroaction selected by Hd.6 for CFW-E2	On leading edge	
				68	Calibration threshold alarm HB for CFW-M	On leading edge	
				69	Calibration threshold alarm HB for CFW-E1	On leading edge	
				70	Calibration threshold alarm HB for CFW-E2	On leading edge	
				71	MAN / AUTO CFW-M	On leading edge	
				72	MAN / AUTO CFW-E1	On leading edge	
				73	MAN / AUTO CFW-E2	On leading edge	
				74	ON / OFF Software CFW-M	On leading edge	
				75	ON / OFF Software CFW-E1	On leading edge	
				76	ON / OFF Software CFW-E2	On leading edge	
					6 for inverse logic input 2 to force logic state 0 (OFF) 3 to force logic state 1 (ON) or diG.1 only for diG.1 only (PWM1 max 100Hz), diG /M2 max 1Hz), diG.3 (PWM3 max 1Hz)	.2	

385	51 694	R/W	Defining type of digital inputs	Table defining type of digital inputs		0
				0	PNP Digital Inputs	
				1	NPN or voltage-free contact digital inputs	

Advanced Settings

NOTE: if the digital input is used to command the power % (Ou.P) on the load (PWM input function, diG = 7), it is important to set Timeout parameter PWm.t to a value equal to or higher than the period of the PWM control signal used to guarantee this reaction time even in static conditions of low input (Ou.P=0%) or high input (Ou.P=100%).

Timeout for PWM Input

356	PWMt 1	R/W	Timeout for PWM input 1	0.01 10.00 sec.	1.00
357	PWMt 2	R/W	Timeout for PWM input 2	0.01 10.00 sec.	1.00
362	PWMt 3	R/W	Timeout for PWM input 3	0.01 10.00 sec.	1.00

Input Filter - PWM Input

438	FEPWMI	R/W	Digital low-pass filter PWM input 1	0.020.0 se	ec	0.1
372	FFbMM5	R/W	Digital low-pass filter PWM input 2	0.020.0 se	ec	0.1
373	FEPWM 3	R/W	Digital low-pass filter PWM input 3	0.020.0 se	ec	0.1

Read State

68	State of Digital	R	OFF = Digital input 1 off
Bit	Input 1		R ON = Digital input 1 on
92	State of Digital	R	OFF = Digital input 2 off
Bit	Input 2		R ON = Digital input 2 on
67	State of Digital	R	OFF = Digital input 3 off
Bit	Input 3		R ON = Digital input 3 on
66	State of Digital	R	OFF = Digital input 4 off
Bit	Input 4		R ON = Digital input 4 on

317		R	Sate of INPUT DIG digital inputs	bit.0 = state INDIG1 bit.1 = state INDIG2 bit.2 = state INDIG3 bit.2 = state INDIG4
518	In.PWM 1	R	PWM 1 input value	0.0100.0%
435	In.PWM 2	R	PWM 2 input value	0.0100.0%
457	In.PWM 3	R	PWM 3 input value	0.0100.0%

Functions Related to Digital Inputs

- MAN / AUTO controller.....see AUTO/MAN CONTROL
- Reset memory latch..... see GENERIC ALARMS AL1 .. AL4
- Software OFF / ON see SOFTWARE SHUTDOWN
- Calibration of feedback reference see FEEDBACK
- Calibration of HB alarm setpointsee HB ALARM

Using a Function Associated with Digital Input and Via Serial

At power-on or on the leading edge of digital input 1 or 2, all zones assume the state set by the digital input. For each zone, this state can be changed by writing via serial.

The setting via serial is saved in eeprom (STATUS_W_EEP, address 698).

	Setting	Address for writing via serial		
State A/B	dIG. or dIG.2	Access at 16 bit	access at 1 bit	
AUTO/MAN controller	1	word 305 bit 4	bit 1	
LOC/REM setpoint (**)	2	word 305 bit 6	bit 10	
SP1/SP2 setpoint (**)	5	word 305 bit 1	bit 75	
ON/OFF software	6	word 305 bit 3	bit 11	
STOP/START selftuning (**)	8	word 305 bit 2	bit 3	
STOP/START autotuning (*) (**)	9	word 305 bit 5	bit 29	

(*) continuous or one-shot (**) only for zone 1 (CFW-M)

Using a Function of Digital Input 1 to Enable at Software ON

Software ON can be configured either by enabling a digital input or by writing via serial. Enabling by digital input 1 (diG) is common to all zones, whereas enabling via serial is specific for each individual zone.

The ON/OFF setting via serial is saved in eeprom (STATUS_W_EEP, address 698 bit 3) for resetting of the condition at the next hardware power-on; use parameter P.On.t. to force software always ON or software always OFF at next power-on.

	Setting	Address for writing via serial		
State A/B	dlG	Access at 16 bit	access at 1 bit	
ON/OFF software	13	word 305 bit 3	bit 11	

Alarms

Generic Alarms AL1, AL2, AL3 and AL4

Four generic alarms are always available and can perform various functions.

Typically, alarm AL.1 is defined as minimum and AL.2 as maximum.

These alarms are set as follows:

- select the reference variable to be used to monitor the value (parameters A1.r, A2.r, A3.r and A4.r): the origin of the variable can be chosen from the process variable PV (generally linked to the main input), the ammeter input, the voltmeter input, the auxiliary analog input, or the active setpoint.
- set the value of the alarm setpoint (parameters AL.1, AL.2, AL.3 and AL.4).

This value is used for comparison with the reference variable value: it can be absolute or indicate a shift from the variable in case of deviation alarm.

• set the hysteresis value for the alarm (parameters Hy.1, Hy.2, Hy.3 and Hy.4):

the hysteresis value defines a band for safe re-entry of the alarm condition: without this band, the alarm would be deactivated as soon as the reference variable re-entered the setpoint limits, with the possibility of generating another alarm signal in the presence of oscillations of the reference signal around the setpoint value.

- select alarm type:
 - absolute/deviation: if the alarm refers to an absolute value or to another variable (for example, to the setpoint).
 - direct/reverse: if the reference variable exceeds the alarm setpoint in the "same direction" as the control action or not. For example, the alarm is direct if the reference variable exceeds the upper setpoint value during heating or assumes values below the lower setpoint during cooling. In the same manner, the alarm is reverse if the reference variable assumes values below the lower setpoint during heating or exceeds the setpoint during cooling.
 - normal/symmetrical: if band value is subtracted or added, respectively, to/from the upper and lower limit of the alarm setpoints or indicates a higher and lower band compared to the alarm setpoint.
 - with/without disabling at switch-on: if you want to check the reference variable value at system switch-on or wait until the variable enters the control window.
 - with/without memory: if the alarm signal persists even when the cause has been eliminated or stops when the variable returns to normal values.

The above concepts are better explained in the following figures:

For AL1 reverse absolute alarm (low) with positive Hyst1, AL1 t = 1 (*) = OFF if disabled at switch on

For AL2 direct absolute alarm (high) with negative Hyst2, AL2 t = 0

For AL1 = normal inverse deviation alarm with negative Hyst 1, AL1 t = 3 For AL1 = normal direct deviation alarm with negative Hyst 1, AL1 t = 2

Symmetrical absolute alarm

For AL1 = symmetrical inverse absolute alarm with Hyst1, AL1 t = 5 For AL1 = symmetrical direct absolute alarm with Hyst1, AL1 t = 4 Minimum hysteresis = 2 scale points

Allarme relativo al setpoint di tipo simmetrico

For AL1 = Symmetrical inverse deviation alarm with Hyst 1, AL1 t = 7 For AL1 = Symmetrical direct deviation alarm with Hyst 1, AL1 t = 6

Reference Variables

215	A le	R/W	Select Reference Variable Alarm 1
216	82-	R/W	Select Reference Variable Alarm 2
			Select Deference
217	83r	R/W	Variable Alarm 3
218	ЯЧс	R/W	Select Reference Variable Alarm 4

Table of Alarm Reference Setpoints						
Туре	Variable to be Compared	Reference Setpoint	0			
0	PV (process variable)	AL				
1	in.tA1 (In.tA1 OR In.tA2 OR In.tA3 With 3-phase load)	AL	0			
2	In.tV1 (In.tV1 OR In.tV2 OR In.tV3 With 3-phase load)	AL				
3	SPA (active setpoint)	AL (absolute only)				
4	PV (variabile di processo)	AL (absolute only, refer to SP1 (with functional multiset)	0			
5	In.2 auxiliary input	AL				
6	In.3 auxiliary input	AL				
7	In.4 auxiliary input	AL	0			
8	In.5 auxiliary input	AL	0			
9	In.A analg input	AL				
10	In.Pwm PWM input	AL				
N.B. ⁻	for codes 1, 2, 5, 6, 7, 8	, 9 and 10 the reference to the				

alarm is in scale points and not to the decimal point (dP.x)

Alarm Setpoints

12 475-177	RL I	R/W	Alarm setpoint 1 (scale points)	-999999 if alarm symetrical 0999 if alarm relative and symetrical	500
13 476-178	813	R/W	Alarm setpoint 2 (scale points)	-999999 if alarm symetrical 0999 if alarm relative and symetrical	100
1 4 52-479	RL 3	R/W	Alarm setpoint 3 (scale points)	-999999 if alarm symetrical 0999 if alarm relative and symetrical	700
58 480	RLY	R/W	Alarm setpoint 4 (scale points)	-999999 if alarm symetrical 0999 if alarm relative and symetrical	800

Alarm Hysteresis

27 187	XY (R/W	Hysterisis for Alarm 1	±999 Scale points	0999 sec. Se +32 in A1.t 0999 min. Se +64 in A1.t	-1
30 188	XA5	R/W	Hysterisis for Alarm 2	±999 Scale points	0999 sec. Se +32 in A1.t 0999 min. Se +64 in A1.t	-1
53 189	X73	R/W	Hysterisis for Alarm 3	±999 Scale points	0999 sec. Se +32 in A1.t 0999 min. Se +64 in A1.t	-1
59	ХУЧ	R/W	Hysterisis for Alarm 4	±999 Scale points	0999 sec. Se +32 in A1.t 0999 min. Se +64 in A1.t	-1

Alarm Type

406	81.E	R/W	Alarm Type 1
407	82.E	R/W	Alarm Type 2
408 (54)	83.E	R/W	Alarm Type 3
409	84.E	R/W	Alarm Type 4

Table of Alarm behavior						
AL.x.t	Direct (High Limit) Absolute Inverse (Low Limit) Relative		Normal Symmetrical (Window)			
0	direct	absolute	normal	0		
1	inverse	absolute	normal	0		
2	direct	relative	normal			
3	inverse	relative	normal	0		
4	direct	absolute	symmetrical	U		
5	inverse	absolute	symmetrical			
6	direct	relative	symmetrical	0		
7	inverse	relative	symmetrical	0		
8 to disable at switch-on until first setpoint						

16 to enable memory latch

32 Hys becomes delay time for activation of alarm (0...999 sec.) (excluding absolute symmetrical)
64 Hys becomes delay time for activation of alarm (0...999 min.) (excluding absolute symmetrical)

136 to disable at switch-on or at change of setpoint until first setpoint
256 only for alarms with memory and delay time: the delay time becomes a timed hysteresis (with time stopped in case of SBR condition: when SBR condition disappears the delay time starts counting from zero)

46 bit	AL1 Direct/Inverse	R/W
47 bit	47 bit AL1 Absolute/Relative	
48 bit	AL1 Normal/Symmetrical	R/W
49 bit	AL1 Disabled at Switch-On	R/W
50 bit	AL1 with Memory	R/W
54 bit	AL2 Direct/Inverse	R/W
55 bit	AL2 Absolute/Relative	R/W
56 bit	AL2 Normal/Symmetrical	R/W
57 bit	AL2 Disabled at Switch-On	R/W
58 bit	AL2 With Memory	R/W
36 bit	AL3 Direct/Inverse	R/W
37 bit	AL3 Absolute/Relative	R/W
38 bit	AL3 Normal/Symmetrical	R/W
39 bit	AL3 Disabled at Switch-On	R/W
40 bit	AL3 With Memory	R/W
70 bit	AL4 Direct/Inverse	R/W
71 bit	AL4 Normal/Symmetrical	R/W
72 bit	AL4 Normal/Symmetrical	R/W
73 bit	AL4 Disabled at Switch-On	R/W
74 bit	AL4 With Memory	R/W
Enable Alarms

105	0		Coloct Number of Enchlad Alarma	Table of Enabled Alarms						
190		H/VV	Select Number of Enabled Alarms	AL.nr	Alarm 1	Alarm 2	Alarm 3	Alarm 4	0	
				0	disabled	disabled	disabled	disabled		
				1	enabled	disabled	disabled	disabled		
				2	disabled	enabled	disabled	disabled		
				3	enabled	enabled	disabled	disabled		
				4	disabled	disabled	enabled	disabled		
				5	enabled	disabled	enabled	disabled		
				6	disabled	enabled	enabled	disabled		
				7	enabled	enabled	enabled	disabled		
				8	disabled	disabled	disabled	enabled		
				9	enabled	disabled	disabled	enabled		
				10	disabled	enabled	disabled	enabled		
				11	enabled	enabled	disabled	enabled		
				12	disabled	disabled	enabled	enabled		
				13	enabled	disabled	enabled	enabled		
			+ 16 to enable HB alarm	14	disabled	enabled	enabled	enabled		
			+ 32 to enable LBA alarm	15	enabled	enabled	enabled	enabled		

Reset Memory Latch

140	d16.	R/W	C	Digital In	put Function		Digital Input Functions Table					
						C	C	No function (input off)				
619	11C D		Di	aital Inr	out Eurotion 2	1	1	MAN /AUTO controller		0		
010	U 10. L		וט	gitai inp		2	2	LOC / REM		U		
						3	3	HOLD				
						4	4	AL1,, AL4 latch alarm reset				
						5	5	SP1 / SP2 selection				
						6	6	Software on/off				
						7	7	None				
						8	8	START / STOP Selftuning				
						g	9	START / STOP Autotuning				
						1	0	Power_Fault latch alarm reset				
						1	1	LBA alarm reset				
						1:	2	AL1 AL4 and Power_Fault latch alarm reset				
						1:	3	Enable at software ON (*)				
694*	d IG . 3	R/W	Di	igital Inp	out Function 3	1-	4	Reference calibration of retroaction selected by Hd.6				
712*	d16.4	R/W	Di	gital Inp	out Function 4	15 Calibration threshold alarm HB						
* For 40	0 to 600A mode	els only.				r inverse logic input						
								force logic state 0 (OFF)				
							10 01	torce logic state I (UN)				
79 _{bit} Reset Memory Latch R/W												

Read State

4 bit	St	ate of <i>i</i>	Alarm 1	R	OFF = Alarm o ON = Alarm o	off on		
5 bit	St	ate of /	Alarm 2	R	OFF = Alarm o ON = Alarm o	off on		
62 bit	62 bit State of Alarm 3				OFF = Alarm c ON = Alarm o	off n		
69 bit	69 _{bit} State of Alarm 4				OFF = Alarm o ON = Alarm o	off on		
318		R	State of A	larms A	ALSTATE IRQ			States of Alarms Table
							bit	
							0	State AL.1
							1	State AL.2
							2	State AL.3
							3	State AL.4
							4	State AL.HB (if 3-phase or phase 1/2/3) or Power Fault
							5	State AL.HB PHASE 1 (if 3-phase)
							6	State AL.HB FASE 2 (if 3-phase)

7

State AL.HB FASE 3 (if 3-phase)

Functional Diagram

Loop Break Alarms

Enable Alarm

This alarm identifies incorrect functioning of the control loop due to a possible load break or to a short circuited or reversed probe.

With the alarm enabled (parameter AL.n), the instrument checks that in condition of maximum power delivered for a settable time (Lb.t) greater than zero, the value of the process variable increases in heating or decreases in cooling: if this does not happen, the LBA alarm trips. In these conditions, power is limited to value (Lb.P).

The alarm condition resets if the temperature increases in heating or decreases in cooling.

HB Alarm (Heater Break Alarm)

This type of alarm identifies load break or interruption by measure the current delivered by means of a current transformer.

The following three fault situations may occur:

- delivered current is lower than nominal current: this is the most common situation, and indicates that a load element is breaking.
- delivered current is higher than nominal current: this situation occurs, for example, due to partial short circuits of load elements.
- delivered current remains significant even during periods in which it should be zero: this situation occurs in the resence of pilot circuits for the shortcircuited load or due to relay contacts soldered together. In these cases, prompt action is very important to prevent greater damage to the load and/ or to the pilot circuits.

In standard configuration, output SSR is associated to heating control in zone 1, obtained by modulating electrical power with the ON/OFF control based on the set cycle time.

The current read performed during the ON phase identifies an anomalous shift from the rated value due to a load break (first two fault situations described above), while the current read performed during the OFF phase identifies a break in the control relay, with consequent output always active (third fault situation).

The alarm is enabled by means of parameter AL.n; select the type of function you want by means of parameter Hb.F:

Hb.F=0: alarm activates if the current load value is below the setpoint value set in A.Hbx while the SSR control output is ON.

Hb.F=1: alarm activates if the current load value is above the setpoint value set in A.Hbx while the SSR control output is OFF.

Hb.F=2: alarm activates by combining functions 0 and 1, considering the setpoint of function 1 as 12% of the ammeter full scale defined in H.tAx.

Hb.F=3 or Hb.F=7 (continuous alarm): alarm activates due to a load current value below the setpoint value set in A.Hbx; this alarm does not refer to the cycle time and is disabled if the heating (cooling) output value is below 3%.

Setting A.Hbx = 0 disables both types of HB alarm by forcing deactivation of the alarm state.

The alarm resets automatically if its cause is eliminated.

An additional configuration parameter for each zone, related to the HB alarm is:

Hb.t = delay time for activation of HB alarm, understood as the sum of times for which the alarm is considered active. For example, with:

- **Hb.F** = 0 (alarm active with current below setpoint value),
- **Hb.t** = 60 sec and cycle time of control output = 10 sec,
- power delivered al 60%,

the alarm will activate after 100 sec (output ON for 6 sec each cycle);

if power is delivered at 100%, the alarm will activate after 60 sec.

If the alarm deactivates during this interval, the time sum is reset.

The delay time set in Hb.t must exceed the cycle time of the SSR output.

If zone 1 has a 3-phase load, you can set three different setpoints for the HB alarm:

A.Hb1= alarm setpoint for line L1 A.Hb2= alarm setpoint for line L2 A.Hb3= alarm setpoint for line L3

Function: HB Alarm Setpoint Self-Learning

This function permits self-learning of the alarm setpoint.

To use this function, you first have to set parameter Hb.P, which defines the percentage of current compared to rated load below which the alarm trips.

The function can be activated via control from serial line, digital input (see parameter dIG or dIG.2) or by key (see HW/SW Information-Key Features).

When the Teach-in function is activated in modes ZC, BF and HSC, the RMS current value in conduction ON multiplied by parameter Hb.P determines the HB alarm setpoint.

When the Teach-in function is activated in mode PA NO infrared lamps, the existing RMS current value is shown at 100% of power, which, multiplied by parameter Hb.P, determines the HB alarm setpoint. Before activating the function, it is necessary that the CFW is switched on with power, it is recommended, above 50%.

In the case of HSC mode or PA for IR lamps (see parameter Hd.5 option +128), the function activates automatic reading of the power/current curve useful for determining the HB alarm setpoint.

Automatic reading of the power/current curve takes place with the following sequence:

- softstart at maximum power (default 100%), 5 sec. delay
- reduction of power to 50%, 30%, 20%, 15%, 10%, 5%, 3%, 2%, 1%, between every value 5 sec. delay
- return to normal operation.

Maximum conduction value in this phase can be limited by means of the PS.Hi parameter.

Enable Alarm

If requested, MUST be activated only with Hd.6=0 (the required Hd.6 value can be set only after calibration).

In case of HSC firng mode, the Heater Break alarm teach-in function doesn't calibrate at 5%, 3%, 2% and 1% in order to avoid

high peak currents due to the low impedence at very low temperature of the IR lamp filament.

195	81.n	R/W	Select num	ber of enabled a	alarms		See Table of Enabled Alarms			
57	НЪ.Ρ	R/W	HB /	Alarm Functions			Table of HB Alarm Functions		0	
							Val.	Description of functions		
Defau SINGI	lt: _ <u>E-PHASE L(</u>	<u>DAD:</u> ea	ch A.HbX refer	rs to its respective	phase.		0	Relay, logic output: alarm active at a load current value below set point for control output ON time.		
<u>2-PHASE LOAD:</u> single reference setpoint A.Hb1 and OR betwee phases 1, 2 and phases 3, 4. <u>3-PHASE LOAD:</u> single reference setpoint A.Hb1 and OR amon							1	Relay, logic output: alarm active at a load current value above set point for control output OFF time.		
phase	<u>3-PHASE LOAD:</u> single reference setpoint A.Hb1 and OR among phases 1, 2 and 3.							Alarm active if one of functions 0 and 1 is active (OR logic between functions 0 and 1) (*)		
+8H ⊥16r	B reverse ala	rm Ne setoc	vints and single	ad nhasas WITH	ЛТН	3	Continuous heating alarm			
3-PH/	ASE LOAD	Jie Seipe	and single				7	Continuous cooling alarm		
							(*) n	ninimum setpoint is set at 12% of ammeter full scale		
56 HB.L R/W Delay time for activation 0)9 s	ec	The value must exceed the cycle time of the 0 999 sec output to which the HB alarm is associated.	25.0	
112 bit	112 Calibration HB alarm bit setpoint for Zone R/W Of HB Alarm					n	Va	NB: In case of 3-phase load, you can set a diffe alue for parameter A.Hb1, A.Hb2, A.Hb3 for eacl (ex.: to control an unbalanced 3-phase load)	erent n zone 1.	

Alarm Setpoints

55	8.861	R/W	HB alarm setpoint (scale points ammeter input - Phase 1)		10.0 Zone 1	10.0 Zone 2	10.0 Zone 3
502	8.X62	R/W	HB alarm setpoint (scale points ammeter input - Phase 2)	With 3-phase load	10.0		
503	8.X63	R/W	HB alarm setpoint (scale points ammeter input - Phase 3)	With 3-phase load	10.0		
737	ньр	R/W	Percentage HB alarm setpoint of current read in HB calibration	0.0 100.0%	80.0 Zone 1	80.0 Zone 2	80.0 Zone 3
742	ньея	R/W	CT read in HB calibration		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
452	ΧЪΕν	R/W	TV read in HB calibration		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
743	НЬ₽ ₩	R/W	Ou.P power in calibration		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
758	IntAd	R/W	HB calibration with IR lamp current at 100% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
759	IrER1	R/W	HB calibration with IR lamp current at 50% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
760	14582	R/W	HB calibration with IR lamp current at 30% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
761	16283	R/W	HB calibration with IR lamp current at 20% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
767	16284	R/W	HB calibration with IR lamp current at 15% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
768	IntRS	R/W	HB calibration with IR lamp current at 10% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
769	IntR6	R/W	HB calibration with IR lamp (only in mode PA) current at 5% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
382	16287	R/W	HB calibration with IR lamp (only in mode PA) current at 3% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
383	Irt88	R/W	HB calibration with IR lamp (only in mode PA) current at 2% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
384	16289	R/W	HB calibration with IR lamp (only in mode PA) current at 1% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
445	1-EV0	R/W	HB calibration with IR lamp Voltage at 100% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
446	1-271	R/W	HB calibration with IR lamp Voltage at 50% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
447	14575	R/W	HB calibration with IR lamp Voltage at 30% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
448	I-EV3	R/W	HB calibration with IR lamp Voltage at 20% conduction		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3

449	1681/4	R/W	HB calibration with IR lamp Voltage at 15% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
450	16272	R/W	HB calibration with IR lamp Voltage at 10% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
451	1-tV6	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 5% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
390	1-573	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 100% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
391	1-EV8	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 100% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
392	1-273	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 1% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3

Read State

744	НЪ	եր		R	HB alarm setpoint as function of power on load				
26 bit	HB ALARM POWEF	I STATI R_FAUL	E OR T	R	OFF = Alarm off ON = Alarm on				
76 bit	State of phas	HB ala e 1TA	rm	R					
77 bit	7 State of HB alarm it phase 3TA 8 State of HB alarm			R					
78 bit	State of phas	HB ala e 3TA	rm	R					
504			R	HB al	arm states ALSTATE_HB (for 3	-phas	e loads)		Table of HB Alarm States
								Bit	
								0	HB TA2 time ON
								1	HB TA2 time OFF
								2	HB alarm TA2
								3	HB TA3 time ON
								4	HB TA3 time OFF
								5	HB alarm TA3
512		R	S	tates of	alarm ALSTATE (for single-ph	ase loa	ads)	Tab	ble of alarm states ALSTATE
								Bit	
								4	HB alarm time ON
								5	HB alarm time OFF
								6	HB alarm
318		R		States o	of alarm ALSTATE IRQ			State	s of alarm table
						Bit			
						0	State AL.	1	
						1	State AL.2	2	

5

7

2 State AL.3 3 State AL.4

4 State AL.HB (if 3-phase or phase 1/2/3) or Power Fault

State AL.HB PHASE 1 (if 3-phase)

State AL.HB PHASE 3 (if 3-phase)

6 State AL.HB PHASE 2 (if 3-phase)

Functional Diagram

NOTE:

the value of setpoint Hb.tr for the HB alarm is calculated in two different ways, depending on the selected function mode:

if PA mode

Hb.tr = A.Hb * V(Ou.P)

HB Calibration in modes ZC - BF - HSC

SBR - ERR ALARM 400 - 600A Models (probe in short or connection error)

This alarm is always ON and cannot be deactivated. It controls correct functioning of the probe connected to the main input.

In case of broken probe:

- the state of alarms AL1, AL2, AL3 and AL4 is set based on the value of parameter rEL;
- control power control is set to the value of parameter FAP.

Identification of the type of break detected on the main input is contained in Err.

Enable Alarm

220	-0		Fault action (definition of state in case of broken probe) Sbr, Err		Table of	f Probed Ala	ırm Settings		0
229	FEL		Only for main input	_rEL	Alarm 1	Alarm 2	Alarm 3	Alarm 4	U
				0	OFF	OFF	OFF	OFF	
				1	ON	OFF	OFF	OFF	
				2	OFF	ON	OFF	OFF	
				3	ON	ON	OFF	OFF	
				4	OFF	OFF	ON	OFF	
				5	ON	OFF	ON	OFF	
				6	OFF	ON	ON	OFF	
				7	ON	ON	ON	OFF	
				8	OFF	OFF	OFF	ON	
				9	ON	OFF	OFF	ON	
				10	OFF	ON	OFF	ON	
				11	ON	ON	OFF	ON	
				12	OFF	OFF	ON	ON	
				13	ON	OFF	ON	ON	
				14	OFF	ON	ON	ON	
				15	ON	ON	ON	ON	
228	F8.P	R/W	Fault Action Power (supplied in conditions of broken probe)	-100.	ICTION	0.0			

Read State

85	Err	R	Erro	r code in self-diagnostics of main input	See: Table of error codes
9 bit	STATE OF IN SB	INPUT R	R	OFF = - ON = Input in SBR	

660	LJ 3		Enable POWER_FAULT		Table of	0	0	0			
000	no.c		alarms	Hd.2	SSR Short	NO_V	OLTAGE	NO_CURRENT	Zone 1	Zone 2	Zone 3
				0							
				1	Х						
				2			Х				
				3	Х		Х				
				4							
				5	Х						
				6			Х				
				7	Х		Х				
				8				Х			
				9	Х			Х			
				10			Х	Х			
				11	Х	_	Х	Х			
				12				Х			
				13	Х	_		Х			
				14			Х	Х			
			1	15	Х		Х	Х			
661	45 E	R/W	Refresh rate SSR S	Short	1	999 500					0
001	00.0	10,00	The alarm activates afte	r 3 faul	ts.	.000 000					
	in n		Time filter for NO VOLTA	GE. SS	R 1.	999	Set a v	alue not less	10	10	10
662	ԾՆ.Բ	R/W	OPEN and NO_CURREN	IT alarn	ns.	sec	than	cycle time	Zone 1	Zone 2	Zone 3
105	Reset SS	R_SHC									
bit	/ N(O_CUF	RENT alarms								

Power Fault Alarms (SSR Short, No_Voltage, SSR_Open and No_Current)

Read State

96 bit	State of alarms SSR_SHORT phase 1	R
97 bit	State of alarms SSR_SHORT phase 2	R
98 bit	State of alarms SSR_SHORT phase 3	R
99 bit	State of alarms NO_VOLTAGE phase 1	R
100 bit	State of alarms NO_VOLTAGE phase 2	R
101 bit	State of alarms NO_VOLTAGE phase 3	R
102 bit	State of alarms NO_CURRENT phase 1	R
103 bit	State of alarms NO_CURRENT phase 2	R
104 bit	State of alarms NO_CURRENT phase 3	R

Overheat Alarm

Each power module has one temperature sensor for the internal heat sink and two additional temperature sensors connected to the LINE and LOAD terminals.

Temperature levels are shown in variables INNTC_SSR, INNTC_LINE and INNTC_LOAD.

The over_heat alarm trips when at least one of the temperatures exceeds a set threshold.

Is also saved in INNTC_SSR_MAX the maximum temperature reached by INNTC_SSR.

This condition may be caused by obstructed ventilation slits or by a stopped cooling fan.

With the over_heat alarm active, the control disables control outputs OUT1, OUT2 and OUT3.

There is an additional maximum temperature protection that hardware disables the SSR controls.

655	R	INNTC_SSR	10.0120.0 °C	Overheat Alarm
534	R	INNTC_LINE	10.0120.0 °C	Overheat Alarm
535	R	INNTC_LOAD	10.0120.0 °C	Overheat Alarm
679	R	INNTC_SSR_MAX	0.0120.0 °C	

Fuse_Open and Short_Circuit_Current Alarms

The FUSE_OPEN alarm trips when the internal highspeed fuse (optional) blows or, on CFW-Xtra models, when the overcurrent protection device switches off.

The SHORT_CIRCUIT_CURRENT alarm trips when peak current on the load exceeds the maximum limit (corresponding to twice the rating) during the softstart ramp or at first power-on (with softstart ramp disabled).

If configured (parameter Fr.n other than zero), the device restarts automatically in softstart for a maximum

of Fr.n attempts, beyond which it remains deactivated while awaiting manual reset with front panel key BUT or with the control via serial (bit 109).

For CFW-Xtra models, the number of times the overcurrent protection device switches off is shown in FO.c1 and FO.c2

The FO count. c1 can be reset via the command via serial (bit116).

456	Fro	R/W	Number of restarts in case of FUSE_OPEN / SHORT_CIRCUIT_CURRENT				
109 bit	RESET FUSE_OPEN /SHORT_ CIRCUIT_CURRENT ALARMS			R/W	OFF = - ON = Reset FUSE_OPEN / SHORT_CIRCUIT_CURRENT alarms		
116 bit	RESETTING Fû.cl			R/W	OFF = - ON = Reset count FO.c1		

*Address 116 bit is 40-300A Only

Read State

634		R	State 4 (STATUS4)	Table of Instrument state 4
434*	FOcl	R	Counter 1: FUSE_OPEN events	
436*	F0c2	R	Counter 2: FUSE_OPEN events	

*Address 434 & 436 bit are 40-300A Only

Overcurrent Fault Protection – 40 to 300A Models

This function eliminates the need for an external extrarapid fuse to protect the device. In case of load shortcircuit, the internal IGBT device is instantaneously switched off and the alarm status is signaled.

- The overcurrent fault protection function DOES NOT replace any of the safeties on the system (such as magnetothermic switches, delay fuses, etc.).
- These caracteristic protects the controller (and therefore also the load) by replacing the high-speed fuse needed to protect the control SCRs against faults (without creating any additional cost to replace the fuse and reducing machine downtime).
- The overcurrent fault protection has 2 function states:
 - Normal (On-Off control of load power)
 - Fuse-Open: CFW is open (a short occurred during normal operation).

Outputs

The modular power controller has high flexibility in the assignment of functions to the physical outputs. As a result, the instrument can be used in sophisticated applications.

A function is assigned to each physical output in two steps: first assign the function to one of internal reference signals rL.1 .. rL.6, and then attribute the reference signal to parameters out.1 .. out.10 (corresponding to physical outputs OUT1 ..OUT10).

In standard configuration, physical outputs Out1, Out2, Out3 perform the heating control function (Heat) for zone 1, zone 2, and zone 3, respectively; value 0 (function HEAT) is assigned to reference signals rL.1 in each zone, and the following values to the output parameters: out.1=1 (output rL.1 zone 1), out.2=2 (output rL.1 zone 2), out.3=3 (output rL.1 zone 3).

Physical outputs Out5, Out6, Out7, Out8 are optional, and the type (relay, logic, continuous or triac) is defined by the order code. In standard configuration, these outputs perform the cooling control function (Cool) for zone 1, zone 2, and zone 3, respectively. In this configuration, value 1 (function COOL) is assigned to reference signals rL.2 in each zone, and the following values to the output parameters: out.5=5 (output rL.2 zone 1), out.6=6 (output rL.2 zone 2), out.7=7 (output rL.2 zone 3).

Relay outputs Out9 and Out10 are always present, programmable by means of parameters out.9 and out.10, to which available alarm signal functions are assigned by means of the four reference signals rL.3, rL.4, rL.5, rL.6 in each zone. Standard configuration has the following assignments: - reference signals: rL.3=2 (function AL1), rL.4=3 (function AL2), rL.5=4 (function AL3) and rL.6=5 (function AL.HB or POWER_FAULT with HB alarm).

- output parameters: out.9 =17 and out.10 =18.

In this way, the state of output physical Out9 is given by the logic OR of AL1, AL3 in each zone, and the state of output Out10 is given by the logic AND of AL2, AL.HB in each zone.

Each output can always be disabled by setting parameter out.x = 0.

The state of outputs Out1,...,Out10 can be acquired by serial communication by means of bit variables.

The following additional configuration parameters are related to the outputs:

Ct.1 = cycle time for output rL.1 for heating control (Heat) (see Settings section)

Ct.2 = cycle time for output rL.2 for cooling control (Cool) (see Settings section)

rEL = alarm states AL1, AL2, AL3, AL4 in case of broken probe, Err, Sbr (see Generic Alarms Section)

Allocation of Reference Signals

160	rt.1	R/W	Allocation of reference signal
163	5.35	R/W	Allocation of reference signal

NOTE: Parameters rL.1, ..., rL.6 for each zone can be considered as internal states.

Ex.: To assign alarm AL1 to physical output OUT5, assign rL.1-Zone1=2 (AL1-alarm 1) and than assign parameter out.5=1 (rL.1-Zone1)

+ 32 for logic level denied in output + 128 to force output to zero **NOTE:** continuous COOL OUTPUTS can be assigned codes 0, 1, 64 and 65 only, with cycle time fixed at 100 ms

i		Table of Reference Signals	0	0	0
al		Function	Zone 1	Zone 2	Zone 3
	0	HEAT (heating control output) / in case of continuous output 020mA / 010V	1 Zone 1	1 Zone 2	1 Zone 3
i al	1	COOL (cooling control output) / in case of continuous output 020mA / 010V			
	2	AL1 - alarm 1			
	3	AL2 - alarm 2			
	4	AL3 - alarm 3			
	5	AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)			
	6	LBA - LBA alarm			
	7	IN1 – repetition of logic input DIG1			
	8	AL4 - alarm 4			
	9	AL1 or AL2			
	10	AL1 or AL2 or AL3			
	11	AL1 or AL2 or AL3 or AL4			
	12	AL1 and AL2			
	13	AL1 and AL2 and AL3			
	14	AL1 and AL2 and AL3 and AL4			
ne	15	AL1 or AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)			
Ind	16	AL1 or AL2 or (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)			
)	17	AL1 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)			
	18	AL1 and AL2 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)			
	19	AL.HB - HB alarm (TA2)			
	20	AL.HB - HB alarm (TA3)			
	21	Setpoint power alarm			
	22	AL.HB - HB alarm (TA1)			
	23	POWER_FAULT			
	24	IN2 - repetition of logic input DIG2			
e	64	HEAT (heating control output) with fast cycle time 0.1 20.0sec. / in case of continuous output 420mA / 210V			
	65	COOL (cooling control output) with fast cycle time 0.1 20.0sec. / in case of continuous output 420mA / 210V			

166	rt.B	R/W	Allocation of reference signal
170	rt.Y	R/W	Allocation of reference signal
171	rt.S	R/W	Allocation of reference signal
172	rt.6	R/W	Allocation of reference signal

Value	Function	2 Zone 1	2 Zone 2	2 Zone 3
2	AL1 - alarm 1			
3	AL2 - alarm 2			
4	AL3 - alarm 3	05	05	05
5	AL.HB or POWER_FAULT w/ HB alarm (TA1 OR TA2 OR TA3)	Zone 1	Zone 2	Zone 3
6	LBA - LBA alarm			
7	IN1 - repetition of logic input DIG1			
8	AL4 - alarm 4	4	4	4
9	AL1 or AL2	Zone 1	Zone 1	Zone 1
10	AL1 or AL2 or AL3			
11	AL1or AL2 or AL3 or AL4	_160	_160	_160
12	AL1 and AL2	Zone 1	Zone 2	Zone 3
13	AL1 and AL2 and AL3			
14	AL1 and AL2 and AL3 and AL4			
15	AL1 or AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)			
16	AL1 or AL2 or (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)			
17	AL1 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)			
18	AL1 and AL2 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)			
19	AL.HB - HB alarm (TA2)			
20	AL.HB - HB alarm (TA3)			
21	Setpoint power alarm			
22	AL.HB - HB alarm (TA1)			
23	POWER_FAULT			
24	IN2 - repetition of logic input DIG2			
27	FUSE_OPEN/SHORT_CIRCUIT_CURRENT			
28	Overtemperature alarm			
29	Communication error			
30	Device not read			

(*) state definite in zone 1 (CFW-M)

+ 32 for denied logic level at output + 128 to force output to zero

						D (Re	IP 5 = OF sistive lo	F ad)
152* 9	CE.1	R/W	OUT 1 (Heat) cycle time	1200 sec (0.120.0 sec)	Set 0 for BF/HSC function See POWER CONTROL	0 Zone 1	0 Zone 2	0 Zone 3
						C (Inc	IP 5 = OI luctive lo	N ad)
						4 Zone 1	4 Zone 2	4 Zone 3
159*	6515	R/W	OUT 2 (Cool) cycle time	1200 sec (0.120.0 sec)		20 Zone 1	20 Zone 2	20 Zone 3

Read State

308 319		R	Stat	e of rL.x MASKOUT_RL	Table of signal reference states		
					Bit		
					0	State rL.1	
					1	State rL.2	
					2	State rL.3	
					3	State rL.4	
					4	State rL.5	
					5	State rL.6	
12	07475	1.4		OFF = Signal off			

12 Bit	STATE rL.1	R	OFF = Signal off ON = Signal on
13 Bit	STATE rL.2	R	OFF = Signal off ON = Signal on
14 Bit	STATE rL.3	R	OFF = Signal off ON = Signal on
15 Bit	STATE rL.4	R	OFF = Signal off ON = Signal on
16 Bit	STATE rL.5	R	OFF = Signal off ON = Signal on
17 Bit	STATE rL.6	R	OFF = Signal off ON = Signal on

Allocation of Physical Outputs

607	ουξ.Ι	R/W	Allocation of physical output OUT 1
608	5.300	R/W	Allocation of physical output OUT 2
609	ουξ.3	R/W	Allocation of physical output OUT 3
610	ουξ.Υ	R/W	Allocation of physical output OUT 4
611	ουξ.5	R/W	Allocation of physical output OUT 5
612	ουξ.δ	R/W	Allocation of physical output OUT 6
613	ουξ.]	R/W	Allocation of physical output OUT 7
614	ουξ.8	R/W	Allocation of physical output OUT 8
615	ουξ.9	R/W	Allocation of physical output OUT 9
616	ουξ.10	R/W	Allocation of physical output OUT 10

	1				
0	Output disabled				
1	Output rL.1 zone 1	2			
2	Output rL.1 zone 2	0			
3	Output rL.1 zone 3	3			
4	Output rL.1 zone 4	Л			
5	Output rL.2 zone 1	4			
6	Output rL.2 zone 2	5			
7	Output rL.2 zone 3	5			
8	Output rL.2 zone 4	e			
9	Output rL.3 OR rL.5 zone 1	0			
10	Output rL.3 OR rL.5 zone 2	7			
11	Output rL.3 OR rL.5 zone 3				
12	Output rL.3 OR rL.5 zone 4	0			
13	Output rL.4 AND rL.6 zone 1	0			
14	Output rL.4 AND rL.6 zone 2	0			
15	Output rL.4 AND rL.6 zone 3	9			
16	Output rL.4 AND rL.6 zone 4				
17	Output (rL.3 OR rL.5) zone 1zone 4	17			
18 Output (rL.4 AND rL.6) zone 1zone 4					
+32 to reverse output status only for Logic and Relay output					
NOTE: In 3-phase configuration, the state of physical					
output Ol	off is copied to 0012 and 0013.				
In case of	t auxiliary continuous outputs the same output				

In case of auxiliary continuous outputs, the same output functions can not be used on other outputs.

*Address 18 is for 40-300A Models **Address 50 is for 400-600A Models

Read State

82	State of output	R	OFF = Output off
Bit	OUT 1		ON = Active Output
83	State of output	R	OFF = Output off
Bit	OUT 2		ON = Output on
84	State of output	R	OFF = Output off
Bit	OUT 3		ON = Output on
85	State of output	R	OFF = Output off
Bit	OUT 4		ON = Output on
86	State of output	R	OFF = Output off
Bit	OUT 5		ON = Output on
87	State of output	R	OFF = Output off
Bit	OUT 6		ON = Output on
88	State of output	R	OFF = Output off
Bit	OUT 7		ON = Output on
89	State of output	R	OFF = Output off
Bit	OUT 8		ON = Output on
90	State of output	R	OFF = Output off
Bit	OUT 9		ON = Output on
91	State of output	R	OFF = Output off
Bit	OUT 10		ON = Output on

664	R	State of outputs	Bit	Table of output state
			0	OUT 1
			1	OUT 2
			2	OUT 3
			3	OUT 4
			4	OUT 5
			5	OUT 6
			6	OUT 7
			7	OUT 8
			8	OUT 9
			9	OUT 10

Functional Diagram

Analog Outputs - 400 to 600A Models

The 3 optional analog outputs let you retransmit the value of analog quantities. The engineering value of the quantity is limited to the set scale values and a reparameterization is applied based on the type of output selected.

Example 1:

To retransmit the current of the CFW-M load with range 0 - 600 A with output Analog1 (0-10V), set: tP.AO1=2, rF.AO1=17, LS.AO1 = 0,0 A, HS.AO1 = 600,0 A

Example 2:

To retransmit the power of the single-phase load of the CFW-M with range 0 – 500 kW with output Analog1 (0-20mA), set: tP.AO1=0, rF.AO1=21, LS.AO1 = 0.0 kW, HS.AO1 = 500.0 kW

865	£P801	R/W	Output type analog 1		Table of Analog output types	1
966	LOOND	DAA		0	020 mA output	
000				1	420 mA output	
067	LOOND			2	010 V output	
007	יןכרחטסןא	R/W Output type analog 3		3	210 V output	
					+16 Inverse output	

868	r F R O I	R/W	Attribution reference output analog 1
869	-F802	R/W	Attribution reference output analog 2
870	rF803	R/W	Attribution reference output analog 3

		Scal			
	Table of Reference Signals	Min	Max	Limit of Meas.	0
0	NONE	0	65535	-	0
1	Ou.P (control output) of CFW-M	0.0	100.0	%	0
2	Ou.P (control output) of CFW-E1	0.0	100.0	%	0
3	Ou.P (control output) of CFW-E2	0.0	100.0	%	Ŭ
4	In.A1 (analog input 1)	0.0	100.0	%	
5	In.A2 (analog input 2)	0.0	100.0	%	
6	In.A3 (analog input 3)	0.0	100.0	%	
7	In.PWM1 (PWM 1 input)	0.0	100.0	%	
8	In.PWM2 (PWM 2 input)	0.0	100.0	%	
9	In.PWM3 (PWM 3 input)	0.0	100.0	%	
10	I.VF1 (line voltage) of CFW-M	0.0	6553.5	V	
11	I.VF1 (line voltage) of CFW-E1	0.0	6553.5	V	
12	I.VF1 (line voltage) of CFW-E2	0.0	6553.5	V	
13	Ld.V (voltage on load) of CFW-M	0.0	6553.5	V	
14	Ld.V (voltage on load) of CFWE1	0.0	6553.5	V	
15	Ld.V (voltage on load) of CFWE2	0.0	6553.5	V	
16	Ld.V.t (voltage on 3-phase load)	0.0	6553.5	V	
17	Ld.A (current on load) of CFW-M	0.0	6553.5	А	
18	Ld.A (current on load) of CFW-E1	0.0	6553.5	А	
19	Ld.A (current on load) of CFW-E2	0.0	6553.5	А	
20	Ld.A.t (current on 3-phase load)	0.0	6553.5	А	
21	Ld.P (power on load) of CFW-M	0.0	6553.5	kW	
22	Ld.P (power on load) of CFW-E1	0.0	6553.5	kW	
23	Ld.P (power on load) of CFW-E2	0.0	6553.5	kW	
24	Ld.P.t (power on 3-phase load)	0.0	6553.5	kW	
25	Serial line value	0.0	6553.5	-	

Settings

The controller has the following setpoint controls.

Setting the Setpoint

The active (control) setpoint (SPA) can be set by means of the local setpoint (SP) or the remote setpoint (SP.rS). A remote setpoint can assume the value of an auxiliary input or one set via serial line (SP.r).

The remote setpoint can be defined in absolute value or relative to the local setpoint; in the latter case, the control setpoint will be given by the algebraic sum of the set local and the remote setpoint.

Local Setpoint

Remote Setpoint

|--|

181	£9.2	R/W	Auxiliary analog input function		See: AUXILIARY ANALOG INPUT (LIN/TC)	0
The rem	ote setpo	nt can l	be set by means of the auxiliary analog	р	input by enabling the function with parameter tP.2	
			Demote estimated			1

18 136-249	SP.r	R/W	(SET gradient for manual power correction)		Setpoint Table				
+4 set g	radient in d	igit/see	D.		Type of Remote Set	Absolute/Relative			
+8 manual power correction based on line voltage					Digital (from serial line)	Absolute			
+16 disa	ables saving	es saving of local setpoint _SP	ŀ	Digital (from serial line)	Relative to local set (_SP of	SP1	o SP2)		
returns t	+32 disables saving of local manual power (at switch-off, returns to last value saved)				2 Auxiliary input	Absolute			
				(B Auxiliary input	Relative to set (_SP o S	SP1 o	SP2)	
			Remote Setpoint from						

Shared Settings

305

25 20-28-1	42 Lo	. L	R/W	SF	Lower settable limit SP, SP.1, SP.2, SP remote		Lo.SHi.S		i.S		0
26 21-29-1	43 H 1	.٤	R/W	SF	Upper settable limit SP.1, SP.2, SP remote		L	o.SH	i.S		1000
10 bit	LOCAL	_/REM	NOTE	R/W	Instrument State (STATUS_)				Table	e of Instrument Settings	0
								Bit			
								0	-		

Instrument State

L	o.SH	i.S	1		
		Table of Instrument Settings			
	Bit				
	0	-			
	1	Select SP1/SP2			
	2	Start/Stop Selftuning			
	3	Select ON/OFF			
	4	Select AUTO/MAN			
	5	Start/Stop Autotuning			
	6	Select LOC/REM			

Read Active Setpoint

1 137-481	528	R	Active Setpoint
4		R	Deviation (SPA-PV)

R/W

Setpoint Control

Set Gradient

The "Set Gradient" function sets a gradual variation of the setpoint, with programmed speed, between two defined values. If this function is active (G.SP other than 0), at switch-on and at auto/man switching the initial setpoint is assumed equal to the PV, and the local or selected set is reached with set gradient. Every variation of set, including variations of the local setpoint, is subject to the gradient. The value of remote setpoint SP.rS is not saved in eeprom.

The set gradient is inhibited at switch-on when selftuning is enabled.

234 22	6.SP	R/W	Set gradient	0.0999.9 digit / min (digit / sec see SP.r)	0.0
259	6.S2	R/W	Set gradient relative to SP2	0.0999.9 digit / min (digit / sec see SP.r)	0.0

265	Hot	R/W	Select specialized control functions		Table of Specialized Control								
							Fault Action Power if	Enable Preheating					
						Enable	PV is not stabilized	softstart					
					0		FA.P						
					1	Х	Average power						
				:	2		FA.P						
				;	3	Х	FA.P						
					4		FA.P	Х					
				4	5	Х	Average power	Х					
					6		FA.P	Х					
					7	Х	FA.P	Х					
FA.P	– see alarm t	for probe	in short or connection error (SBR-ERR)	+8	3 en	able GS.2							

Multiset

The MULTISET function determines the local setpoint by selecting the value from Setpoint (SP.1) or from Setpoint 2 (SP.2) based on the state of a digital input or by setting from a serial line.

The variation between Setpoint 1 and Setpoint 2 can take place with gradient: parameter G.SP determines the speed for reaching Setpoint 1 and parameter G.S2 defines the speed for reaching Setpoint 2.

The MULTISET function is enabled with parameter hd.1 and automatically enables the gradient function. Selection between Setpoint 1 and Setpoint 2 can be seen by means of LED.

191	hd.	łF	R/W	Enable multiset: control instruments via serial		Multis	et table	0.0	
						Enable Multiset	Enable Virtual Instrument		
					0				
					1	1 X			
					2		Х		
					3	Х	Х		
230 482	SP.	{ F	R/W	Setpoint 1		Lo.LHI.L			
231 483	SP.	5 6	R/W	Setpoint 2		Lo.LHI.L			
140	J, b	-	R/W	Digital Input Function		See: Table of digita	I input functions	0	
618	J, B	5	R/W	Digital Input Function 2		See: Table of digita	l input functions	0	
75 bit	Se SP1	elect / SP:	2	R/W OFF = Select SP1 ON = Select SP2					
305		R/W		Instrument state (STATUS_W)		Table of instrun	nent settings	0	
					Bit				
					0	- Soloot SD1/SD2			
					2	Start/Stop Selftuning			

3 Select ON/OFF

- 4 Select AUTO/MAN
- 5 Start/Stop Autotuning
- 6 Select LOC/REM

Functional Diagram

Controls

PID Heat/Cool Control

The controller can manage a heating output and a cooling output in a completely independent manner. Heating and cooling parameters are described below. Parameters for PID (proportional band, integral and derivative time) control are typically calculated by means of Autotuning and Selftuning functions.

Control Actions

Proportional action: action in which contribution to output is proportional to deviation at input (deviation = difference between controlled variable and setpoint

Derivative action: action in which contribution to output is proportional to rate of variation input deviation.

Integral action: action in which contribution to output is proportional to integral of time of input deviation.

Proportional, derivative and integral action

Increasing the proportional band reduces oscillation but increases deviation.

Reducing the proportional band reduces deviation but causes oscillation of the controlled variable (excessively low proportional band values make the system unstable).

An increase in Derivative Action corresponds to an increase in Derivative Time, reduces deviation, and prevents oscillation up to a critical Derivative Time value, beyond which deviation increases and there are prolonged oscillations.

An increase in Integral Action corresponds to a decrease in Integral Time, tends to annul deviation between the controlled variable and the setpoint at rated operating speed.

If the Integral Time value is too long (weak Integral Action), there may be persistent deviation between the controlled variable and the setpoint.

For more information on control actions, contact Chromalox.

Heat/Cool Control with Separate or Superimposed Band

Output with separate band

Control output with only proportional action in case of proportional heating band separate from cooling band.

Output with superimposed band

Control output with only proportional action in case of proportional heating band superimposed on cooling band.

Heat/Cool Control with Relative Gain

This control mode (enabled with parameter Ctr = 14) asks you to specify cooling type. The PID cooling parameters are then calculated based on heating parameters in the ratio specified (ex: C.ME = 1 (oil), $H_Pb = 10$, $H_dt = 1$, $H_It = 4$ implies: $C_Pb = 12.5$, $C_dt = 1$, $C_It = 4$)

Apply the following values when setting cycle times: Air T Cool cycle = 10 sec. Oil T Cool cycle = 4 sec. Water T Cool cycle = 2 sec.

NB.: Cool parameters cannot be changed in this mode.

PID Parameters 40-300A

617*	SPU	R/W	Reference power		Table of Selections	0 Zone 1	0 Zone 2	0 Zone 3
				0	Power from analog input (In.A)			
				1	Power from main input (PV)			
				2	Power from aux input (In.2)			
				3	Power from aux input (In.3)			
				4	Power from aux input (In.4)			
				5	Power from aux input (In.5)			
					Power from PID (PID_POWER) (**)			
				7	Power from digital input (In.Pwm)			
(**) func	tion "slave" z	zone		9	Power from CFW-M (FW_POWER) (**)			
				10	Power from CFW-E1 (FW_POWER) (**)			
(*): • The r	eference nov	ver of a s	slave zone in automatic mode is the	11	Power from CFW-E2 (FW_POWER) (**)			
powe	er of a maste	r zone in	automatic or manual mode.	12	Power from analog input 2 (in.A2)			
 The r manu 	 The reference power manual power. Software shutdown i 		slave zone in manual mode is the zone	13	Power from analog input 3 (in.A3)	400.4-	000 Ma da	la Orala
 Softv 			ns independent for each zone.	14	Power from digital input 2 (in.Pwm2)	400 to	ouu iviode	eis Only
				15	Power from digital input 3 (in.Pwm3)			

PID Parameters 40-300A

180	Ctr	R/W	Control Type		Table of Heat/Cool Controls	6
				0	P heat	
				1	P cool	
				2	P heat / cool	
				3	PI heat	
				4	PI cool	
				5	PI heat / cool	
				6	PID heat	
				7	PID cool	
				8	PID heat / cool	
				9	ON-OFF heat	
Solact a	ample time f	or derivat	tive action	10	ON-OFF cool	
+0 sam	ple 1 sec.			11	ON-OFF heat / cool	
+16 san	nple 4 sec.			12	PID heat + ON-OFF cool	
+64 san	nple 240 mse	c.		13	ON-OFF heat + PID cool	
+128 No	o Reset of int	egral cor	nponent at setpoint change	14	PID heat + cool with relative gain	
Note: th	ne LBA alarm	is not en	abled in the ON/OFF control.	14	(see parameter C.MEd)	

5 148-149	h.Pb	R/W	Proportional band for heating or hysteresis ON/OFF	0.0999.9% f.s.	1.0
7 150	h.lE	R/W	Integral Heating Time	0.099.99 min	4.00

8 151	h.dŁ	R/W	Deriviative Heating Time	0.099.99 min	1.00
6	с.РЪ	R/W	Proportional band for cooling or hysteresis ON/OFF	0.0999.9% f.s.	1.0
76	c.lt	R/W	Integral Cooling Time	0.0099.99 min	4.00
77	c.dŁ	R/W	Deriviative Cooling Time	0.0099.99 min	1.00

Note: Parameters c.PB, c.It and c.dt are read-only if heat/cool control is enabled with relative gain (Ctr = 14).

513	6.n8	R/W	Select Cooling Fluid	02		Relative	Gain (rG)	0
					0	Air	1	
					1	Oil	0.8	
					2	Water	0.4	

Read State

2 132-471	0uP	R	Value of control outputs (+Heat/-Cool)	(W – only in manual mode at address 252)	
--------------	-----	---	---	--	--

Advanced Settings

39 484	c 5ł	D F	R/W	Cooling setpo relative to heating s	int setpoint	:	:	⊧25.0% f.s.				0.0
78	r 5ł	= F	R/W	Manual rese value added to PII)	t D input)		S	-999999 scale points				0
516	Pr	5 F	R/W	Reset power (value directly to PID ou	e added utput)		-100).00100.0 %				0.0
79	Rr S	5 F	R/W	Antireset (limits integral action	n of PIC))	0	9999 scale points				0
80	۶۶۵	5	R/W	Feedforward (value a PID output after pro	added t cessing	ю 3)	-100).00100.0 %				0.0
42 146	<u> </u>	h	R/W	Maximum limit heatii	ng pow	er	0.	0100.0 %				100.0
254	አዖ(_ F	R/W	Min. limit heating powe able for double heat/co	r (not av ool actic	vail- on)	0.	0100.0 %				0
43	c Pł	-{ F	R/W	Maximum Limit Cooli	ing Pow	/er	0.	0100.0 %				100.0
255	c٩l	_ F	R/W	Min. limit cooling power able for double heat/co	r (not av ool actic	ail- on)	0.	0100.0 %				0.0
765*	PPEr	R/W	F	Percentage of output power	0.0	100	.0 %			100.0 Zone 1	100.0 Zone 2	100.0 Zone 3
766*	PoFS	R/W	0	ffset of output power	-100	.010	0.0 %			0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
763*	GoUE	R/W		Gradient for control output	0.0	200 sec	0.0%	set to 0 to	disable	00.0 Zone 1	0.0 Zone 2	0.0 Zone 3
764*	LoP	R/W	Mi	inimum trigger output	0.0	50.	0 %			0.0 Zone 1	0.0 Zone 2	0.0 Zone 3

*400 to 600Amp

Functional Diagram - 40 to 300A models

Functional Diagram - 400 to 600A models

Automatic / Manual Control

By means of the digital input function you can set the controller in MAN (manual) and set the control output to a constant value changeable by means of communication.

When returning to AUTO (automatic), if the variable is within the proportional band, switching is bumpless.

252*			R/V	/	MANUAL_POWER	-100.0	100.0%		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
2 132-47	71	θυ.	ρ	R	Value of control ou (+Heat / -Cool	itputs I)	(W-only in manual mode at a	address 2	252)	0
140)، b	- J	R/W	Digital Input Func	tion		See: Table of digital input functions			
618	3	d iC	5	R/W	Digital Input Funct	ion 2					
1 bit	t	AUT(MAI)/ V	R/W	OFF = Automat ON = Manual	tic					
305				R/W	State (STATUS_	W)		See: Table of instrument	t settings		0
694*	Р	163	R/V	/ D	igital input function 3	-100. 100.	0 0%		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
712*	Ь	163	R/V	/ D	igital input function 4	-100. 100.	0 0%		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3

* 400 to 600A Models only

Hold Function

The process variable value and the setpoints remain "frozen" for the time the digital input is active.

By activating the digital input with the Hold function when the variable is at values below the setpoint, a setpoint memory reset de-energizes all energized relays and resets all memory latches.

140	<u>д, р</u>	R/W	Digital Input Function	See: Table of digital input functions	0
618	50, 6	R/W	Digital Input Function 2		
64 Bit	Xold	R/W	OFF = Disable Hold ON = Enable Hold		

Manual Power Correction

With this function (available on models with CV diagnostics option), you can run a correction of power delivered in manual based on the reference line voltage (riF). The % value of the (Cor) is freely settable and acts in inverse proportion.

The function is activated/deactivated by means of parameter SP.r.

Example: with the following settings: Cor = 10%; riF = 380; SP.r = value + 8; instrument in manual; line voltage 380 VAC, manual power set at 50%, following a 10% increase in line voltage, 380V + 10% (380V) = 418V, there is a decrease in set manual power equal to the same % of change: 50% - 10% (50%) = 45%.

To use this function, the controller must have a CT (current transformer) and a VT (voltage transformer). N.B.: the % change in manual power is limited to the value set in parameter "Cor".

The maximum manual power correction is limited to $\pm 65\%$.

505	с (F	R/W	Line Voltage			0.0999.9			0.0
Compensat	ion of the v	oltage tr	ansformer read to maintain output pov	vera	at a c	onstant level.			
506	Cor	R/W	Correction of manual power based on line voltage		0	.0100.0 %			0.0
18 136-249	SPr	R/W	Remote setpoint (SET gradient for manual power correction)			Se	etpoint Ta	ıble	0
						Type of Remot	e Set	Absolute/Deviation	
					0	Digital (from seria	al line)	Absolute	
					1	Digital (from seria	al line)	Deviation local set (_SP o SP1 o SP2)	
					2	Auxiliary input		Absolute	
					3	Auxiliary input		Deviation set (_SP o SP1 o SP2)	
					+4 9 +8 0 +16 +32 off 1	set gradient in digit correction of manu disable saving of disable saving of returns to last value	t/sec. lal power local setj local mai e saved)	based on line voltage point _SP nual power (at switch-	

Start Mode

699*	Pont	R/W	Start modes at Power-On		Table of booting methods	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
*Digital i	nput states al	ways hav	/e priority	0	Function at previous state			
				1	Software shutdown			
				2	Software startup			

Start Mode

- A. Enter the setpoint at its working value.
- B. Set the proportional band at 0.1% (with on-off type setting).
- C. Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure:
- D. The PID parameters are calculated as follows: Proportional band

Peak P.B.= ----- x 100 V max - V min

(V max - V min) is the scale range.

Integral time It = 1.5 x T

Derivative time dt = It/4

- E. Switch the controller to manual, set the calculated parameters (activate the PID control by setting a cycle time for relay outputs, if any), switch to automatic.
- F. To assess parameter optimization, change the setpoint value if possible and check temporary behavior. If oscillation persists, increase the value of the proportional band; if response is too slow, decrease the value.

Autotuning

Enabling the autotuning function blocks the settings of the PID parameters.

Autotuning continues to measure the system oscillations, seeking as quickly as possible the PID parameter values that reduce the oscillation; it does not intervene if the oscillations drop to values below 1.0% of the proportional band.

It is interrupted if the setpoint is changed, and resumes automatically with a constant setpoint. The calculated parameters are not saved; if the instrument is switched off the controller resumes with the parameters programmed before autotuning was enabled.

Autotuning terminates the procedures with switching to manual.

Enabling the autotuning function blocks the settings of the PID parameters.

It can be two types: continuous or one shot.

Continuous autotuning is enabled with parameter Stu (values 1, 3, 5); it continues to measure the system oscillations, seeking as quickly as possible the PID parameter values that reduce the oscillation; it does not intervene if the oscillations drop to values below 1.0% of the proportional band.

It is interrupted if the setpoint is changed, and resumes automatically with a constant setpoint.

The calculated parameters are not saved if the instrument is switched off, in case of switching to manual or disabling the code in configuration, and controller resumes with the parameters programmed before autotuning was enabled. The calculated parameters are saved when the function is enabled via digital input or via A/M key (start / stop) at stop.

One-shot autotuning can be activated manually or automatically with parameter Stu (as can be seen on the table, the values to be set depend on enabling of Selftuning or Softstart).

It is useful for calculating PID parameters when the system is in the vicinity of the setpoint; it produces a variation on the control output of a maximum of \pm 100% of the current control power limited by h.PH - h.PL (heat), c.PH - c.PL (cool) and assesses the effects in overshoot over time. The calculated parameters are saved.

Manual activation (code Stu = 8, 10, 12) by setting the parameter directly or via digital input or key.

Automatic activation (code Stu = 24, 26, 28 with error range of 0.5%) when the PV-SP error exceeds the defined range (programmable at 0.5%, 1%, 2%, 4% of full scale).

Activation is inhibited if PV ${<}5\%$ or PV ${>}95\%$ of input scale.

NB: at switch-on after selftuning, after switching to MANUAL, after software shutdown or after a setpoint change, automatic activation is inhibited for an interval equal to five times the integral time, with a minimum of 5 minutes.

An identical interval has to lapse after a one-shot run.

See: CONTROL - PID Parameters

ნხი	R/W	Enable selftuning, autotuning, softstart		Selftuning, autotuning, softstart table									
			S.tu	Autotuning continuous	Selftuning	SoftStart							
			0	NO	NO	NO							
			1	YES	NO	NO							
			2	NO	YES	NO							
			3	YES	YES	NO							
			4	NO	NO	YES							
			5	YES	NO	YES							
			6	-	-	-							
			7	-	-	-							
			8*	WAIT	NO	NO							
			9	GO	NO	NO							
			10*	WAIT	YES	NO							
with automati	c switchi	ng in GO if PV-SP > 0.5% f.s.	11	GO	YES	NO							
h automatic s	witching	in GO if PV-SP > 1% f.s.	12*	WAIT	NO	YES							
n automatic s ith automatic	switching	in GO if PV-SP > 2% f.s. g in GO if PV-SP > 4% f.s.	13	GO	NO	YES							
	with automati h automatic s h automatic s ith automatic	with automatic switching h automatic switching ith automatic switching	SEu R/W Enable selftuning, autotuning, softstart with automatic switching in GO if PV-SP > 0.5% f.s. h automatic switching in GO if PV-SP > 1% f.s. h automatic switching in GO if PV-SP > 1% f.s. h automatic switching in GO if PV-SP > 2% f.s. ith automatic switching in GO if PV-SP > 4% f.s. h automatic switching in GO if PV-SP > 4% f.s.	Stu Enable selftuning, autotuning, softstart S.tu 0 1 2 3 4 5 6 7 8* 9 10* th automatic switching in GO if PV-SP > 0.5% f.s. 11 h automatic switching in GO if PV-SP > 1% f.s. 11 12* 13	Selftuning, autotuning, softstart Selftuning, autotuning S.tu Autotuning S.tu Continuous 0 NO 1 YES 2 NO 3 YES 4 NO 5 YES 6 - 7 - 8* WAIT 9 GO 10* WAIT 11 GO 12* WAIT 13 GO	Stu R/W Enable selftuning, softstart Selftuning, autotuning, softstart Stu Autotuning Selftuning 0 NO NO 1 YES NO 2 NO YES 3 YES YES 4 NO NO 5 YES NO 6 - - 7 - - 8* WAIT NO 9 GO NO 10* WAIT YES 11 GO YES 12 WAIT NO 9 GO NO 10* WAIT YES 11 GO YES 11 GO YES 11 GO YES 11 GO YES 12* WAIT NO 13 GO NO	Selfuning, autotuning, softstartSelftuning, autotuning, softstartSubSubSelftuningSoftstartSubSubSelftuningSoftstartSubNONONONONONONONONONOYESNONOYESNONONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESSubNOYESSubNOYESSubNOYESSubNONONONOYESSubNOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNONOYESNO						

140	J, b	R/W	Digital Input Function	See: Table of digital input functions	0.0
618	50, 6	R/W	Digital Input 2 Function		0.0
29 bit	AUTOTUNI	NG R/	W OFF = Stop Autotuning ON = Start Autotuning		

Read State

28 bit	AUTOTUNING STATE	R	OFF = Autotuning in Stop ON = Autotuning in Start						
68 bit	DIGITAL INPUT 1	R	OFF = Digital input 1 off ON = Digital input 1 on		See: Table of digital in	put functio	ons		
92 bit	DIGITAL INPUT 2	R	OFF = Digital input 2 off ON = Digital input 2 on						
296		Aut en	otuning and selftuning able state (FLG_PID)					(C
				3	Selftuning On				
				4 Softstart On					
				6	Autotuning On				
305	R/W		Instrument state	Tab	le of instrument settings	0 Zone 1	0 Zone 2	0 Zone	3
				Bit					
				0	-				
				1	Select SP1/SP2				
				2	Start/Stop Selftuning				
				3	Select ON/OFF				
				4	Select AUTO/MAN				
				5	Start/Stop Autotuning				
				6	Select LOC/REM				

Selftuning

This function is valid for single-action (either heat or cool) systems and for double-action (heat/cool) systems.

Selftuning is activated to calculate the best control parameters when starting the process. The variable (example: temperature) must be the one assumed at zero power (room temperature).

The controller supplies the maximum power set until reaching an intermediate point between starting value and the setpoint, then resets power. The PID parameters are calculated by evaluating superelongation and the time needed to reach the peak (N.B.: This action is not considered in ON/OFF control).

When the function is completed, it disengages automatically, and the control proceeds to reach the setpoint.

How to activate selftuning:

- A. Activation at switch-on
 - 1. Set the setpoint to the desired value.
 - 2. Enable selftuning by setting parameter Stu to 2
 - 3. Switch off the instrument.
 - 4. Make sure that temperature is near room temperature.
 - 5. Switch on the instrument.
- B. Activation via serial command
 - 1. Make sure that temperature is near room temperature.
 - 2. Set the setpoint to the desired value.
 - 3. Run the Start Selftuning command.

The procedure runs automatically until termination. At termination, the new PID parameters are saved: proportional band, integral and derivative times calculated for the current action (heat or cool). In case of double action (heat + cool), the parameters for the opposite action are calculated by maintaining the initial ratio between the parameters (example: Cpb = Hpb * K; where K = Cpb / Hpb when selftuning is started). At termination, the Stu code is automatically cancelled.

Note: The procedure does not start if temperature exceeds the setpoint for heat control, or is below the setpoint for cool control. In this case, the Stu code is not cancelled. It is advisable to enable the LEDs to signal selftuning state. By setting parameter Ld.St = 4 on the Hrd menu, the appropriate LED will light up or flash when selftuning is active.

31	Stu	R/W	Enable selftuning, autotuning, softstart			Selftuning, au	totuning, soft	start table	0
						Autotuning continuous	Selftuning	SoftStart	
				C)	NO	NO	NO	
				1	I	YES	NO	NO	
				2	2	NO	YES	NO	
				3	3	YES	YES	NO	
				4	1	NO	NO	YES	
				Ę	5	YES	NO	YES	
				6	3	-	-	-	
				7	7	-	-	-	
				8	3*	WAIT	NO	NO	
				ę)	GO	NO	NO	
				1	0*	WAIT	YES	NO	
(*) +16 v	vith automati	c switchi	ng in GO if PV-SP > 0.5% f.s.	1	1	GO	YES	NO	
+32 with	n automatic s	witching	in GO if PV-SP > 1% f.s.	1	2*	WAIT	NO	YES	
+64 witi +128 wi	th automatic s	switching	g in GO if PV-SP > 2% f.s.	1	3	GO	NO	YES	

140	J, B	R/W		Digital Input Function		See: Table of digital input functions	0.0
618	50, b	R/W		Digital Input 2 Function			0.0
3 bit	SELFTUNIN	IG R	R/W OFF = Selftuning in Stop ON = Selftuning in Start				
305	R/	R/W Instrument state			Table of instrument settings	0	
Read	d State						
0 bit	SELFTUNING STATE		R OFF = Selftuning in Stop ON = Selftuning in Start				
68 bit	Digital Inp	ut 1	R	OFF = Digital input 1 off ON = Digital input 1 on		See: Table of digital input functions	
92 bit	Digital Inp	ut 2	R	OFF = Digital input 2 off ON = Digital input 2 on			
296	R Autotuning and selftuning enable state (FLG_PID)			otuning and selftuning able state (FLG_PID)			0
					Bit		
					3	Selftuning On	
					6	Autotuning On	

Soft Start

If enabled, this function partializes power based on a percentage of time elapsed since instrument switch-on compared to the set time of 0.0 ... 500.0 min ("SoFt" parameter CFG phase). Softstart is an alternative to selftuning and is activated after each instrument switch-on. Softstart is reset when switching to manual.

31	Stu	R/W	Enable selftuning, autotuning, softstart		Selftuning, au	totuning, softsta	rt table	0
					Autotuning continuous	Selftuning	SoftStart	
				0	NO	NO	NO	
				1	YES	NO	NO	
				2	NO	YES	NO	
				3	YES	YES	NO	
				4	NO	NO	YES	
				5	YES	NO	YES	
				6	-	-	-	
				7	-	-	-	
				8*	WAIT	NO	NO	
				9	GO	NO	NO	
				10*	WAIT	YES	NO	
(*) +16 v	with automati	c switchi	ng in GO if PV-SP > 0.5% f.s.	11	GO	YES	NO	
+32 wit	h automatic s	witching	in GO if PV-SP > 1% f.s.	12*	WAIT	NO	YES	
+64 WIt +128 w	ith automatic s	switching	g in GO if PV-SP > 2% f.s.	13	GO	NO	YES	

147	SoF	R/W		Softstart Time	0.0500.0 min	0.0
30 bit	RESTA SOFTST	RT ART	R/W	OFF = ON = Restart of Softstart		

Read State

Start Mode

699	Pont	R/W	Start modes at Power-On			0
				0*	Function at previous state	
				1	Software shutdown	
				2	Software startup	
Soft	ware Sh	nutdo	own		(*) digital input states always have priority	

Running the software shutdown procedure causes the following:

- 1) Reset of Autotuning, Selftuning and Softstart.
- 2) Digital input enabled only if assigned to SW shutdown function.
- 3) In case of switch-on after SW shutdown, any ramp for the set (set gradient) starts from the PV.
- 4) Outputs OFF: except for signals them of reference rL.4 and rL.6 that they come forced ON
- 5) Reset of HB alarm.
- 6) Reset of LBA alarm.

7) The Heat and Cool bit on the state word STATUS

and POWER are reset.

- 8) At shutdown, the current power is saved. At switch-on, integral power is recalculated as the difference between saved power and proportional power; this calculation is defined as "desaturation at switch-on."
- 9) In case of Geflex, the state of alarms (AL1...AL4, ALHBTA1...ALHBTA3) is reset.
- 10) Alarms AL 1... AL 4 can be enable or disable through the parameter oFF.t.

140	d 16	R/W	D	Digital I	nput Function			See: Table of digital input functions	0.0
618	500 6	R/W	Di	Digital Input 2 Function					0.0
11 bit	SOFT LAUNCH/S	WARE HUTDO	OWN	R/W	OFF = ON ON = OFF				
700 (00 OFFE R/W Modes at software shutdown						0	Outputs rL.1- rL.2 - rL.3 - rL.5 = OFF Outputs rL.4 - rL.6 = ON Alarms AL.1 -AL.2 -AL.3 - AL.4 disabled	0
							1	Outputs rL.1- rL.2 - rL.3 - rL.5 = OFF Outputs rL.4 - rL.6 = ON Alarms AL.1 -AL.2 -AL.3 - AL.4 enabled	
							+16	Restart of the Softstart at the switch-on soft- ware (ON Software)	
694*	6463	R/W	Di	igital In	put 3 Function		See:	Table of digital input functions	0.0
712*	940A	R/W	Di	igital In	put 4 Function		See:	Table of digital input functions	0.0

* for 400 to 600A Models only

Read State

68 bit	State of Digital Input 1	R	OFF = Digital input 1 off ON = Digital input 1 on		
92 bit	State of Digital Input 2	R	OFF = Digital input 2 off ON = Digital input 2 on		
67* bit	State of Digital Input 3	R	OFF = Digital input 3 off ON = Digital input 3 on		
66* bit	State of Digital Input 4	R	OFF = Digital input 4 off ON = Digital input 4 on		
305		R/W	Status	See: Table of instrument settings	0

Other Functions

Fault Action Power (40 to 300A Only)

You can decide what power to supply in case of broken probe.

FAP is the reference power for parameter FAP.

Average power is the average power calculated in the last 300 sec.

The alarm reset and reference power update take place only at switch-on or after a setpoint change.

The alarm is not activated if the control (Ctr) is ON/OFF type, during Selftuning and in Manual.

265	ΧоΈ	R/W	Select Specialized Control Functions		See: Hot runners table - Setpoint Settings		
228	F8.P	R/W	Fault Action Power (supplied in conditions of broken probe)		-100.0100.0 %		0.0

Read State

26	HB ALARM STATE OR	R	OFF = Alarm off
bit	POWER_FAULT		ON = Alarm on
80 bit	State of Power alarm	R	OFF = Alarm off ON = Alarm on

Power Alarm

The alarm signals any power changes (OuP) after the process variable (PV) has stabilized on the setpoint (SP). The time beyond which the process variable is considered stable is 300 sec.

The reference power update take place only at switchon or after a setpoint change.

If the process variable leaves the stabilization band after the first stabilization, this does not influence the alarm.

In case of SBR:

- if the PV has not yet stabilized, either the average power over the last 5 minutes or FAP power is supplied (depending on the setting of the HOT parameter).
- if the PV has stabilized the average power over the last 5 minutes is supplied.

Function:

If necessary, assign an output (rL.2...6) for the power alarm.

Set the band (b.ST) within which the process variable is considered stable after 300 sec. have elapsed.

Set the band (b.PF) outside which the alarm is activated after time PF.t has elapsed.

The reference power is the active power after 300 sec. have elapsed.

The alarm reset and reference power update take place only at switch-on or after a setpoint change.

The alarm is not activated if the control (Ctr) is ON/OFF type, during Selftuning and in Manual.

The parameters for alarm power are:

261	ხნხ	R/W	Stability Band (specialized control alarm power function)		0.0100.0 % f.s.			0.0		
262	68£	R/W	Alarm Power Band (specialized control alarm power function)		0.0100.0 %			0.0		
260	PFE	R/W	Delay Time for alarm power activation (specialized controls)		0999 sec			0		
160	rt i	R/W	Allocation of reference signal		See: Generic alarms –Table reference signals	of 0 Zone 1	0 Zone 2	0 Zone 3		
*40 to 3	*40 to 300A models only									
163	613	R/W	Allocation of reference signal			1 Zone 1	1 Zone 2	1 Zone 3		
*40 to 300A models only										
166	rt3	R/W	Allocation of reference signal - OR output			2 Zone 1	2 Zone 2	2 Zone 3		
170	гĽЧ	R/W	Allocation of reference signal - AND Output			35 Zone 1	35 Zone 2	35 Zone 3		
171	rt5	R/W	Allocation of reference signal - OR output			4 Zone 1	4 Zone 2	4 Zone 3		
172	rt6	R/W	Allocation of reference signal - AND Output			160 Zone 1	160 Zone 2	160 Zone 3		
Softstart for Preheating

This function lets you deliver a settable power (So.P) for time (SoF), after which normal control is resumed by means of PID control.

Activation is only at switch-on, with manual-automatic switching during Softstart (the time restarts from 0), and if the process variable is below setpoint SP.S.

With softstart time SoF = 0, preheat condition PV <SP.S with settable power SO.P is continuously checked.

0.0

31	Stu	R/W	Enable selftuning, autotuning, softstart	Selftuning, autotuning, softstart table									
				S.tu	Autotuning continuous	Selftuning	SoftStart						
				0	NO	NO	NO						
				1	YES	NO	NO						
				2	NO	YES	NO						
				3	YES	YES	NO						
				4	NO	NO	YES						
				5	YES	NO	YES						
				6	-	-	-						
				7	-	-	-						
				8*	WAIT	NO	NO						
				9	GO	NO	NO						
				10*	WAIT	YES	NO						
(*) +16 \	with automati	ic switchi	ng in GO if PV-SP > 0.5% f.s.	11	GO	YES	NO						
+32 wit	h automatic s	witching	in GO if PV-SP > 1% f.s.	12*	WAIT	NO	YES						
+128 w	ith automatic	switchin	g in GO if PV-SP > 4% f.s.	13	GO	NO	YES						
263	585	R/W	Softstart setpoint (preheating of hot runners)		Lo.LHI.L			0					
264	SoP	R/W	Softstart power (preheating of hot runners)		-100.00 100.0 %			0.0					

0.0 ...500.0 min

Read State

147

SoF

R/W

63 bit	STATE OF SOFTSTART	R	OFF = Softstart in Stop ON = Softstart in Start
-----------	--------------------	---	--

Softstart TIme

Heating Output (Fast cycle)

For outputs rL.1 (Out 1) and rL.2 (Out 2) you can set a fast cycle time (0.1 ... 20 sec) by setting the parameter to 64 (Heat) or 65 (Cool).

160	et l	R/W	Allocation of reference signal	See: Generic alarms reference sign	–Table of als	0 Zone 1	0 Zone 2	0 Zone 3
163	535	R/W	Allocation of reference signal		1 Zone 1	1 Zone 2	1 Zone 3	
152 9	CE. (R/W	OUT 1 (Heat) cycle time	1200 sec (0.120 sec)	or GTT fu OWER CC	nction 2 NTROL	2	

400 to 600A Models only.

Operating Hour Meter

The device shows in OH. c (Operating Hours Counter) the number of operating hours (line voltage present and nonzero power); updating in non-volatile memory occurs every two hours and the disarming of the line voltage.

396	OXc	R/W	Hours of Operation	Hours of Operation Data format: Dword (32 bit)								
							D (Re	IP 5 = OF sistive lo	F ad)			
152* 9	CE.I	R/W	OUT 1 cycle time	1200 (0.120) sec .0 sec)	(*)	0 Zone 1	0 Zone 2	0 Zone 3			
				*Set to C See pov) for BF wer ma	HSC functions	DIP 5 = ON (Inductive load)					
							4 Zone 1	4 Zone 2	4 Zone 3			

Power Control

SSR Control Modes

On Modality:

The CFW has the following power control modes:

- PA modulation via variation of phase angle

- ZC, BF, HSC modulation via variation of number of conduction cycles with zero crossing trigger.

<u>PA phase angle:</u> this mode controls power on the load via modulation of the phase angle.

<u>ZC zero crossing</u>: this type of operation reduces EMC emissions. This mode controls power on the load via a series of conduction ON and non conduction OFF cycles.

The cycle time is constant and can be set from 1 to 200 sec (or from 0.1 to 20.0 sec).

BF burst firing: this mode controls power on the load via a series of conduction ON and non conduction OFF cycles. The ratio of the number of ON cycles to OFF cycles is proportional to the power value to be supplied to the load. The repeat period or cycle time is kept to a minimum for each power value. Parameter bF.Cy defines the minimum number of conduction cycles, settable from 1 to 10.

In case of 3-phase load without neutral or closed delta, $BF.Cy \ge 5$ has to be set to ensure correct operation (balancing of current in the 3 loads).

HSC Half Single Cycle: this mode corresponds to a BF that includes ON and OFF half-cycles. It is useful for reducing flicker with short-wave IR loads (and is applied only to single-phase or 3-phase with neutre or open delta loads).

Start mode is set with parameter Hd.5

YES

YES

-

YES

YES

Control of maximum rms current (whose value is set in parameter Fu.tA) can always be enabled with parameter Hd.5 in every power-on mode.

The cycle time can be set with two different resolutions in seconds or tenths of a second based on the type of heat or cool function assigned to outputs rL1 and rL2. The use of short cycle times (< 2-3 sec) is always recommended in case of control with SSRs.)

+ 64 linear phase Softstart in power

+128 phase Softstart for IR lamps

+ 256 phase Softstart for shutdown in software ON/OFF switching

PA

PA

NO

YES

30

31

SOFTSTART or START RAMP

This type of start can be enabled either in phase control or pulse train mode and acts via control of the conduction angle. It is enabled with parameter Hd.5.

The softstart ramp starts from a zero conduction angle and reaches the angle set in parameter PS.HI in the time set in parameter PS.tm, from 0.1 to 60.0 sec.

With parameter Hd.5 (+64), you can configure a linear softstart in power, i.e., starting from zero you reach the power value corresponding to the maximum conduction angle set in PS.HI. Softstart ends before the set time if power reaches the corresponding value set in manual control or calculated by PID.

Control of maximum peak current can be enabled with parameter Hd.5 during the ramp phase; peak value is settable in parameter PS.tA. This function is useful in case of short circuit on the load of loads with high temperature coefficients to automatically adjust start time to the load.

The softstart ramp activates at the first start after power-ON and after a software reboot. It can be reactivated via software control by writing bit 108 or automatically if there are OFF conditions for a time exceeding the one settable in PS.oF (if =0 the function is as if disabled).

The ramp can also be enabled with parameter Hd.5 (+256) after a software shutdown, i.e., zero is reached in the set time from delivered power.

630*	PSX	R/	W	Maximum pha softstar	ase of phase t ramp		0.0100.0%				100 zon	0.0 e 1	100.0 zone 2	100.0 zone 3
705*	PSEC] R/	w	Duration of ph ran	nase softstart np		0.160.0 s					.0 e 1	10.0 zone 2	10.0 zone 3
629*	PSoP	: _{R/}	w	Min. non-cond reactivate phase	uction time to softstart ramp		0999 s				2 zon	2 e 1	2 zone 2	2 zone 3
706*	Ρςεα	R/W	M	laximum peak current limit	0.0999.9 A		Model	40A	60A	100A	150A	200	A 250A	A 300A
						D	Default Zone 13 CFW	110.0	170.0	280.0	420.0	560	.0 700.0	840.0
						D	Default Zone 13 CFWxtra	110.0	170.0	230.0				

108* bit	Restart of phase softstart ramp	R/W	OFF = Restart not enabled ON = Restart enabled
106* bit	State of phase softstart ramp	R	OFF = Ramp not active ON = Ramp active
107* bit	State of phase softstart ramp	R	OFF = Ramp not ended ON = Ramp ended

NB: In case of a 3-phase load, you can set a different value from parameter PS.tA for each zone (ex. to control an unbalanced 3-phase load).

Delay Triggering

In firing modes ZC and BF, with inductive loads, this function inserts delay triggering in the first cycle.

The delay is expressed in degrees settable in parameter dL.t, from 0 to 90 degrees. The function is enabled with parameter Hd.5 (+32).

The function activates automatically if there are OFF conditions for a time exceeding the one settable in dL.oF (if =0 the function is as if disabled).

- Optimized Delay-Triggering value for transformer monophase: 60°
- Optimized Delay-Triggering value for 3-phase transformer: 90°, 90°, 40

							60 zone 1	60 zone 2	60 zone 3
708*	dLE	R/	W Delay triggering (first trigger only)	0.	90°		90 zone 1	90 zone 2	90 zone 3
738*	dlof	R/W	Minimum non-conduction time to tivate delay triggering II Parameter parameter is no longer used dL.oF SW version 2.10	reac- : The from	0 10	000ms	10 zone 1	10 zone 2	10 zone 3

Feedback Modes

The CFW has the following power control modes: V-voltage V2-squared voltage I-current I2-squared current P-power A control mode is enabled with parameter Hd.6.

Voltage feedback (V)

To keep voltage on the load constant, this compensates possible variations in line voltage with reference to the rated voltage saved in riF.V. (expressed in Vrms).

The voltage value maintained on the load is (ref.V*P%_ pid_man/100) and is indicated in the Modbus 757 register.

Voltage feedback (V2)

To keep voltage on the load constant, this compensates possible variations in line voltage with reference to the rated voltage saved in riF.V. (expressed in Vrms).

The voltage value maintained on the load is (rif.V^{*} V (P%_pid_man/100)), and is indicated in the Modbus 757 register.

Current feedback (I)

To keep current on the load constant, this compensates possible variations in line voltage and/or variations in load impedance with reference to the rated current saved in riF.I. (expressed in Arms).

The current value maintained on the load is (rif.I*P%_ pid_man/100), and is indicated in the Modbus 757 register.

Current feedback (I2)

To keep current on the load constant, this compensates possible variations in line voltage and/or variations in load impedance with reference to the rated current saved in riF.I. (expressed in Arms).

The current value maintained on the load is (rif.l* V (P%_pid_man/100)), and is indicated in the Modbus 757 register.

Power feedback P

To keep power on the load constant, this compensates both variations in line voltage and variations in load impedance with reference to the rated power saved in riF.P. (expressed in kWatt).

The current value maintained on the load is (rif.P*P%_ pid_man/100), and is indicated in the Modbus 757 register.

Feedback calibration can be activated from the digital input (parameters DIG and DIG.2) or by serial control (ref. bit113), and if requested MUST be activated only with Hd.6=0 (the required Hd.6 value can be set only after calibration) and preferably with maximum power on the load (ex. P_man or P_pid at 100%).

If you change function mode (PA, ZC, BF, HSC), you have to re-run the Feedback calibration procedure.

Voltage V (or current I or power P) feedback corrects the % of conduction with a maximum settable value in parameter Cor. V (or Cor.I or Cor.P).

For non-linear loads (ex.: Super Kanthal or Silicon Carbide) the automatic calibration procedure is NOT NECESSARY. Set the value of parameters ref.V, ref. I, ref. P based on the specific nominal of the load shown on the datasheet (ref. CFW Installation Guide).

730*	898	R/W	Enable feedback mod	des Table of feedback modes					0 Zone 1	0 Zone 2	0 Zone 3
								Feedback ON			
							0	None			
							1	V2 (Voltage)			
							2	I2 (Current)			
							3	P (Power)			
							4	None			
							5	V (Linear voltage)			
					6 I (Linear current)						
731*	Cor v	R/W	Maximum correction of voltage feedback	0).01(0.00)%		100.0 Zone 1	100.0 Zone 2	100.0 Zone 3
732*	Corl	R/W	Maximum correction of current feedback	0).01(0.00)%		100.0 Zone 1	100.0 Zone 2	100.0 Zone 3
733*	CorP	R/W	Maximum correction of power feedback	0).01(0.00)%		100.0 Zone 1	100.0 Zone 2	100.0 Zone 3
734*	r iF v	R/W	Voltage feedback reference	0).099	99.9	\vee		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
735*	r iF v	R/W	Voltage feedback reference	0).099	99.9	\vee		0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
884 736 LSW o	* * ריד	P R	/W Power feedback reference		0.0.	32	20.00	кW	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
741*	FBIE	R/W	Feedback response speed	Q	0.15.0 % / 60msec) ƏC		0.3 Zone 1	0.3 Zone 2	0.3 Zone 3
113* bit	13*Calibration of voltage feedback referenceR/WOFF = Calibration r ON = Calibration er				on not e n enabl	enal ed	oled				

Read State

856* 757* LSW only	Rr iF	R	Reference of feedback	0.0999.9 V	Setpoint of V, I, P to maintain on load Data in DWORD (32 bit) format for address 886* LSW data in WORD (16 bit) format for address 757*
				0.0 3275.0 A	
				0.01500.00 kW	

Heuristic Control Power

It is useful to be able to limit the delivery of total power to the loads in order to avoid input peaks from the single-phase power line.

This condition occurs during switch-on phases when the machine is cold; the demand for heating power is 100% until temperatures near the setpoint are reached. It is also useful to avoid simultaneity of conduction when there is ON-OFF modulation for temperature maintenance.

The cycle time must be identical for all zones; the power percentage for each zone is limited to that necessary to maintain current within set limits.

This function acts by enabling the control to search for the most appropriate input combinations.

Example 1:

4 loads 380V- 32A (zone 1), 16A (zone 2), 25A (zone 3), 40A (maximum current is 73A in case of simultaneity of conduction).

Current limit I.HEU=50A.

The following combinations of conduction are possible: (to define the number of combinations, remember that the combinations without repetitions are = $n! / (k!^{(n-k)!})$)

11+12 = 48A 11+13 = 57A 12+13 = 41A 11+12+13 = 73A

The combinations corresponding to current values below the limit value are:

|1+|2| = 48A

I2+I3 = 41A

The one with lower current is given by zone 2 & zone 3.

In the single cycle time for the enabled zones, the delivery of power may be reduced to respect the maximum current limit.

The time distribution for activation of the zones is calculated at the start of each cycle:

Ptot = P1+ P2 (if P2>P3) + P3 (if P3>P2)

Simultaneity is allowed for zones 2 and 3.

If P1= 100%, P2= 100%, P3= 100% Ptot=200%; since Ptot>100%, the conduction time of the zone x is obtained by Px * (100/Ptot) P1,2,3 delivered = 100%*0.5 = 50%

If P1= 100%, P2= 50%, P3= 0% Ptot=150%; since Ptot>100%, the conduction time of the zone x is obtained by Px * (100/Ptot) P1 delivered = 100%*0.66 = 67%P2 delivered = 50%*0.66 = 33%P3 delivered = 0%*0.66 = 0%

680	hd3	R/W	Enable heuristic power control		Table for enabling heuristic power										
						Zone 1	2	Zone 2	Zone 3						
				0)										
				3	3	Х		Х							
				5	5	Х		Х							
NOTE: Only for CFW with CTs present and outputs					6	Х		Х							
0	UT1ÓU	Г3 with	slow cycle time (1200sec)	7	'	Х		Х	Х						
		1													
681	IHEU	R/W	Maximum current for heuristic power control		(4	0.0999.9 A 10 to 300A Models)				0.0					
					0.03275.0 A (400 to 600A Models)										

Heterogeneous Power Control

This function matches that of a thermal cutout that disconnects the load based on instantaneous input. The load is disconnected based on a preset priority. Zone 1 has priority: in case of overload, zone 3 is disconnected, followed by zone 2, etc.

682	ከሪዛ	R/W	Enable hetergogeneous power control			Table for enablin	ng he	g heterogeneous power					
						Zone 1	- 2	Zone 2	Zone 3				
				(C								
				-	1	Х							
				2	2	Х							
				3	3	Х		Х					
				2	4	Х							
				Ę	5	Х		Х					
				(6	Х		Х					
				7	7	Х		Х	Х				
683	IHEF	R/W	Maximum current for hetergo- geneous power control		(4	0.0999.9 A 40 to 300A Models)				0.0			
				0.0 3275.0.Δ									

(400 to 600A Models)

Virtual Instrument Control

Virtual instrument control is activated by means of parameter hd.1.

By setting parameters S.In and S.Ou you can enable the writing of some parameters via serial line, set the value of inputs and the state of outputs.

You have to enable alarm setpoints AL1, ..., AL4 when write operations are continuous, and you don't have to keep the last value in eeprom.

Enabling the PV input means being able to exclude the local Tc or RTD acquisition and replace it with the value written in the register VALUE_F.

Enabling digital input IN lets you set the state of this input, for example to run MAN/AUTO switching with the writing of bit 7 in the register V_IN_OUT.

Likewise, you can set the on/off state of outputs OUT1, ..., OUT10 and of the LEDs by writing bits in the register V_IN_OUT.

191	hd l	R/W	Enable Multiset Instrument Control via serial			Table for multiset/virtual instrument										0
					E M		nable ultiset	E	inable Instru	Virtu Iment	al					
					0											
					1		Х									
					2				Х							
					3		Х		2	<						
224	S In	R/W	Control Inputs from Serial	0	2	255					Z	0 Cone 1	(Zor) ne 2	(Zon) ie 3
				Inp	outs	In.A	In.5	In.4	In.3	In.2	-	In.1	AL4	AL3	AL2	AL1
				Bit	t	10	9	8	7	6	5	4	3	2	1	0
225	580	R/W	Control Outputs from Serial	0	0 1023											0
				C	Dutpu	ts Ou	t10 0i	ut9 0	ut8 Oi	ıt7 Ou	t6 C	Dut5 0	ut4 Oi	ut3 Ou	it2 Oi	ut1

628	SU (R/W	Control LEDs and digital inputs from serial	0	0 1023									0
					Inp	outs				LE	Ð			
					D2	D1	04	O3	02	01	D2	D1	ER	RN
				Bit	9	8	7	6	5	4	3	2	1	0

Bit

9

8

7

6 5

4

3

2

1

0

	Table of virtual register addresses								
Parameter	Bit	Resource Enabled	Address of Image Register	Format	Name of Register				
S.In	0	Alarm setpoint AL1	341	word	AL1_RAM				
	1	Alarm setpoint AL2	342	word	AL2_RAM				
	2	Alarm setpoint AL3	343	word	AL3_RAM				
	3	Alarm setpoint AL4	321	word	AL4_RAM				
	4	Input In.1	347	word	SERIAL IN1				
	6	Input In.2	348	word	SERIAL IN2				
	7	Input In.3	578	word	SERIAL IN3				
	8	Input In.4	579	word	SERIAL IN4				
	9	Input In.5	580	word	SERIAL IN5				
	10	Input In.TA	581	word	SERIAL INA				
S.Ou	0	Output OUT 1	344	word, bit 0	V_IN_OUT				
	1	Output OUT 2	344	word, bit 1	V_IN_OUT				
	2	Output OUT 3	344	word, bit 2	V_IN_OUT				
	4	Output OUT 5 (relays)	344	word, bit 4	V_IN_OUT				
	4	Output OUT 5 (continuous)	639	word	SERIAL_OUT5C*				
	5	Output OUT 6 (relays)	344	word, bit 5	V_IN_OUT				
	5	Output OUT 6 (continuous)	640	word	SERIAL_OUT6C*				
	6	Output OUT 7 (relays)	344	word, bit 6	V_IN_OUT				
	6	Output OUT 7 (continuous)	641	word	SERIAL_OUT7C*				
	7	Output OUT 8 (relays)	344	word, bit 7	V_IN_OUT				
	7	Output OUT 8 (continuous)	642	word	SERIAL_OUT8C*				
	8	Output OUT 9	344	word, bit 8	V_IN_OUT				
	9	Output OUT 10	344	word, bit 9	V_IN_OUT				
S.LI	0	Led RN	351	word, bit 0	V_X_LEDS				
	1	Led ER	351	word, bit 1	V_X_LEDS				
	2	Led D1	351	word, bit 2	V_X_LEDS				
	3	Led D2	351	word, bit 3	V_X_LEDS				
	4	Led O1	351	word, bit 4	V_X_LEDS				
	5	Led O2	351	word, bit 5	V_X_LEDS				
	6	Led O3	351	word, bit 6	V_X_LEDS				
	7	Led O4	351	word, bit 7	V_X_LEDS				
	8	Input D1	344	word, bit 10	V_IN_OUT				
	9	Input D2	344	word, bit 11	V IN OUT				

Hardware & Software Information (40 to 300A Models)

The following data registers can be used to identify the controller HW/SW and check its operation.

122	UPd	R	Software version code			
85	Enn	R	Self-diagnosis error code for auxiliary input			Table of main input errors
					0	No Error
606	5-3	R	for auxiliary input 2		1	Lo (Process variable value < Lo.S)
					2	Hi (Process variable value > Hi.S)
550	8-3	R	for auxiliary input 3		3	ERR (third wire interrupted for PT100 or input values below minimum limits (ex. for TC with connec-
551	ЕгЧ	R	Self-diagnosis error code for auxiliary input 4		4	SBR (Probe interrupted or input values beyond
552	ErS	R	Self-diagnosis error code for auxiliary input 5			maximum limits
190	CHG	R	Hardware configuration codes			Table of hardware configuration codes
				bit		
				0	= 1	OUTPUT COOL absent
				1	= 1	OUTPUT COOL relay
				2	= 1	OUTPUT COOL logic
				3	= 1	OUTPUT COOL continuous 020mA / 010V
				4	= 1	OUTPUT COOL triac 250Vac 1A
				5	-	
				7	= 0	
				8	- 1	CFW-M 60A
				9	- 1	CEW-M 100A
				10	= 1	CFW-M 150A
				11	= 1	CFW-M 200A
				12	= 1	CFW-M 250A
				13	= 1	CFW-M Xtra
508	1 6X3	R	Hardware configuration codes 1			Table of hardware configuration codes 1
				bit		
				0	= 1	INPUT AUX absent
				1	= 1	INPUT AUX TC / 60mV
				2	-	
				3	= 1	FIELDBUS ETH4 (ProfiNet)
				4	= 1	
				о С	= 1	
				0	= 1	
				/ 8	= 1	
				9	= 1	FIELDBUS CanOpen
				10	= 1	FIELDBUS
				11	= 1	FIELDBUS Ethernet
				12	= 1	FIELDBUS Euromap66
				13	= 1	FIELDBUS ETH3
				14	= 1	FIELDBUS ETH2 (Ethercat)
				15	= 1	FIELDBUS ETH1 (Ethernet Real Time)

543	56H3	R	Hardware configuration codes 2			Table of hardware configuration codes 2
					bit	
					0	= 1 CFW-E1 no power
					1	= 1 CFW-E1 40A
					2	= 1 CFW-E1 60A
					3	= 1 CFW-E1 100A
					4	= 1 CFW-E1 150A
					5	= 1 CFW-E1 200A
					6	= 1 CFW-E1 250A
					7	= 1 CFW-E1 Xtra
					8	= 1 CFW-E2 no power
					9	= 1 CFW-E2 40A
					10	= 1 CFW-E2 60A
					11	= 1 CFW-E2 100A
					12	= 1 CFW-E2 150A
					13	= 1 CFW-E2 200A
					14	= 1 CFW-E2 250A
					15	= 1 CFW-E2 Xtra
				-		
543	6883	R	Hardware configuration codes 3			Table of hardware configuration codes 3
					bit	
					0	= 1 CFW-M 300A
					1	= 1 CFW-E1 300A
					2	= 1 CFW-E2 300A

Hardware & Software Information (400 to 300A Models)

The following data registers can be used to identify the controller HW/SW and check its operation.

122	UPd	R	Software version code		
190	6X3	R	Hardware configuration codes		Table of hardware configuration codes
				bit	
				0	= 1 OUTPUT AUX absent
				1	= 1 OUTPUT AUX relay
				2	= 1 OUTPUT AUX logic
				5	= 1 OUTPUT AUX continuous 12bit 20mA/10V
				6	= CFW-M no power
				7	= 1 CFW-M 200A
				8	= 1 CFW-M 400A
				9	= 1 CFW-M 600A
				10	= -
				11	= -
				12	= -
				13	= -
				14	= 1 EXTERNAL CT (for all models: 1PH/2PH/3PH)
				13	= 1 CFW-M Xtra
				12	= 1 CFW-M 250A

508	1 6H3	R	Hardware configuration codes 1		Table of hardware configuration codes 1
				bit	
				2	-
				3	= 1 FIELDBUS ETH4 (ProfiNet)
				4	= 1 FIELDBUS ETH5
				5	= 1 FIELDBUS ETH6
				6	= 1 FIELDBUS absent
				7	= 1 FIELDBUS Modbus
				8	= 1 FIELDBUS Profibus
				9	= 1 FIELDBUS CanOpen
				10	= 1 FIELDBUS DeviceNet
				11	= 1 FIELDBUS Ethernet
				12	= 1 FIELDBUS Euromap66
				13	= 1 FIELDBUS ETH3
				14	= 1 FIELDBUS ETH2 (Ethercat)
				15	= 1 FIELDBUS ETH1 (Ethernet IP)

543	56K3	R	Hardware configuration codes 2		Table of hardware configuration codes 2
				bit	
				0	= 1 CFW-E1 no power
				1	= 1 CFW-E1 200A
				2	= 1 CFW-E1 400A
				3	= 1 CFW-E1 600A
				4	= -
				5	= -
				6	= -
				7	= -
				8	= 1 CFW-E2 no power
				9	= 1 CFW-E2 200A
				10	= 1 CFW-E2 400A
				11	= 1 CFW-E2 600A
				12	= -
				13	= -
				14	= -
				15	=-

693 697	UPdF	R	Fieldbus software version
695	CodF	R	Fieldbus node
696	680F	R	Fieldbus baudrate

	Profibus	C	anopen	Eithernet			
bAu.F	baudrate	bAu.F	baudrate	bAu.F	baudrate		
0	12.00 Mbit/s	0	1000 Kbit/s	0	100 Mbit/s		
1	6.00 Mbit/s	1	800 Kbit/s	1	10 Mbit/s		
2	3.00 Mbit/s	2	500 Kbit/s				
3	1.50 Mbit/s	3	250 Kbit/s				
4	500.00 Kbit/s	4	125 Kbit/s				
5	187.50 Kbit/s	5	100 Kbit/s				
6	93.75 Kbit/s	6	50 Kbit/s				
7	45.45 Kbit/s	7	20 Kbit/s				
8	19.20 Kbit/s	8	10 Kbit/s				
9	9.60 Kbit/s						

894	F51Z8	R/	W	I/O data dir fielo	mension fo Ibus	r		Table of Jumper State				
							0	12 words input + 1	2 words output			
							1	24 words input + 2	4 words output			
346		R/W		Jumper Sta	ate		Table	of Jumper State	Off		On	
						Bit	t					
						0	Ju	mper State S1				
						1	Ju	mper State S2				
						2	Ju	mper State S7-1: (*)				
						3	Ju	mper State S7-2: (*)				
						4	Ju	mper State S7-3: (*)				
						5	Ju	mper State S7-4: (*)				
						6	Ju	mper State S7-5:	Resistive Load	Induct	ive Load	
						7	Ju	mper State S7-6:	-	Config paramete	guration rs of default	
						8	Ju	mper State S7-7:				
		07 4	0.	70 670	S7 4			FUN				

S7-1	S7-2	S7-3	S7-4	FUNCTION MODES
OFF	OFF	OFF	OFF	3 single-phase loads
OFF	ON	OFF	OFF	3 independent single-phase loads in open delta
ON	ON	OFF	OFF	3-phase load open delta / star with neutral
ON	ON	ON	OFF	3-phase load closed delta
ON	OFF	OFF	ON	3-phase star load without neutral
ON	OFF	OFF	OFF	3-phase star load without neutral with BIFASE control
ON	OFF	ON	OFF	3-phase closed star load with BIFASE control

120		R	Manufacturer - Trademark
121		R	Device ID (CFW)
197	լզշբ	R/W	RN LED Status Function
619	1.42	R/W	FR LED status function
620	663	R/W	Function of LED DI1
621	694	R/W	Function of LED DI2

	Table of RN LED Functions	16
Value	Function	10
0	RUN	12
1	MAN/AUTO Controller	
2	LOC/REM	c
3	HOLD	0
4	Selftuning ON	
5	Autotuning ON	44
6	Repeat Digital Input D1	
7	Serial 1 Dialog	
8	State of OUT 2 Zone 1	
9	Softstart Running	
10	Indication of SP1SP2 (SP1 with pilot input inactive and LED Off)	
11	Repeat Digital Input D2	
12	Input in Error (LO, HI, ERR, SBR)	
13	Serial 2 Dialog	
14	Repeat digital input INDIG3	
+ 16	LED Flashing if Active (Code 8 Excluded)	

Name of manufacturer

Product ID

5000 214

622	LdS	R/W	Function of LED O1		Table of OUT LED functions				
				0	Disabled				
623	1.45	R/W	Function of LED 02	1	Repetition of state OUT 1				
020			2	Repetition of state OUT 2	0				
				3	Repetition of state OUT 3	2			
624	1.43	R/W	Function of LED 03	4	State key				
			5	Repetition of state OUT 5	0				
				6	Repetition of state OUT 6	.			
625	95.1		Function of LED Button	7	Repetition of state OUT 7				
020		11/ VV		8	Repetition of state OUT 8	1			
				9	Repetition of state OUT 9	4			
				10	Repetition of state OUT 10				
				+ 16	LED flashing if active				

LED status refers to the corresponding parameter, with the following special cases:

- LED RN (green) on: hotkey functionality
- LED RN (green) + LED ER (red) both flashing rapidly: autobaud in progress
- LED ER (red) on: error in one of main inputs (Lo, Hi, Err, Sbr)
- LED ER (red) flashing: temperature alarm ((OVER_ HEAT or TEMPERATURE_SENSOR_BROKEN) or alarm of SHORT_CIRCUIT_CURRENT or SSR_ SAFETY or FUSE_OPEN (only for singlephase configuration).
- LED ER (red) + LED Ox (yellow) both flashing: HB alarm or POWER_FAIL in zone x
- All LEDs flashing rapidly: ROTATION123 alarm (only for threephase configuration)

- All LEDs flashing rapidly except LED DI1: jumper configuration not provided
- All LEDs flashing rapidly except LED DI2: 30%_UN-BALANCED_ERROR alarm (only for threephase configuration)
- All LEDs flashing rapidly except LED O1: SHORT_ CIRCUIT_CURRENT alarm (only for threephase configuration)
- All LEDs flashing rapidly except LED O2: TRI-PHASE_MISSING_LINE_ERROR alarm (only for threephase configuration)
- All LEDs flashing rapidly except LED O3: SSR_ SAFETY alarm (only for threephase configuration)
- All LEDs flashing rapidly except LED BUT: FUSE_ OPEN alarm (only for threephase configuration)

305*	R/W	Current state (STATUS_W)		Table of state settings00Zone 1Zone 2Zone 3
698	R	State saved in eeprom (STATUS_W_EEP)		Bit0000-Zone 1Zone 2Zone 31Select SP1/SP2 (*)2Start/Stop Selftuning (*)3Select ON/OFF4Select AUTO/MAN5Start/Stop Autotuning (*)6Select LOC/REM (*)(*) Only for zone 1 (CEW-M)
467*	R	State (STATUS)	bit 0	Table of State AL.1 or AL.2 or AL.3 or AL.4 or ALHB.TA1 or ALHB.
			1 2 3	Input Lo Input Hi Input Err
			4 5 6 7	Input Sbr heat cool LBA
			8 9 10 11	AL.1 AL.2 AL.3 AL 4
			12 13 14	ALHB or Power Fault ON/OFF AUTO/MAN
469*	R	State 1 (STATUS 1)	13	Table of State 1
			bit 0 1 2 3 4 7 8 9 10 11 11 12 13	AL.1 or AL.2 or AL.3 or AL.4 or ALHB.TA1 or ALHB. TA2 or ALHB.TA3 or Power Fault Input Lo Input Hi Input Err Input Sbr LBA AL.1 AL.2 AL.3 AL.4 ALHB.TA1 ALHB.TA2

633* R State 3 (STATUS 3) 5 AL.1 1 AL.2 2 AL.3 3 AL.4 4 AL.HB1 5 AL.HB2 6 AL.HB2 6 AL.HB3 7 AL.Lo 8 AL.Hi 9 AL.Err 10 AL.Sbr 11 AL.BA 12 AL.Power 10 AL.SSR short 1 4 AL.SSR short 1 3 AL.SSR short 1	
633* R State 3 (STATUS 3) 0 AL.1 1 AL.2 2 AL.3 3 AL.4 4 AL.HB1 5 AL.HB2 6 AL.HB3 7 AL.Lo 8 AL.Hi 9 AL.Err 10 AL.Sbr 11 AL.BA 12 AL.Power	
633* R State 3 (STATUS 3) 1 AL.2 6 AL.4 4 AL.HB1 5 AL.HB2 6 AL.HB3 7 AL.Lo 8 AL.Hi 9 AL.Err 10 AL.Sbr 11 AL.BA 12 AL.Power 633* R State 3 (STATUS 3) 7	
633* R State 3 (STATUS 3) 2 AL.3 2 AL.3 3 AL.4 4 AL.HB1 5 AL.HB2 6 AL.HB3 7 AL.Lo 8 AL.Hi 9 AL.Err 10 AL.Sbr 11 AL.BA 12 AL.Power 11 AL.SSR short 1 3 AL.SSR short 1 3 AL.SSR short 2 633 AL.SSR short 2 5 AL.SSR short 2	
633* R State 3 (STATUS 3) 3 AL.4 4 AL.HB1 5 AL.HB2 6 AL.HB3 7 AL.Lo 8 AL.Hi 9 AL.Err 10 AL.Sbr 11 AL.BA 12 AL.Power 12 AL.SSR short 1 3 AL.SSR short 2 5 AL.SSR short 2	
633* R State 3 (STATUS 3) 4 AL.HB1 5 AL.HB3 7 AL.Lo 8 AL.Hi 9 AL.Err 10 AL.Sbr 11 AL.LBA 12 AL.Power	
633* R State 3 (STATUS 3) 5 AL.HB2 633* R State 3 (STATUS 3) 7 AL.LO 8 AL.Hi 9 AL.Err 10 AL.Sbr 11 AL.LBA 12 AL.Power 12 AL.Power 633* R State 3 (STATUS 3) 7 Table of State 3	
633* R State 3 (STATUS 3) 6 AL.HB3 633* R State 3 (STATUS 3) 7 AL.Lo 8 AL.Hi 9 AL.Err 10 AL.Sbr 11 AL.LBA 12 AL.Power 12 AL.Power 633* R State 3 (STATUS 3) 7 Table of State 3	
633* R State 3 (STATUS 3) 7 AL.Lo 633* R State 3 (STATUS 3) 7 AL.Lo 633* R State 3 (STATUS 3) 7 AL.Lo	
633* R State 3 (STATUS 3) 8 AL.Hi 633* R State 3 (STATUS 3) 10 AL.SSR short 1 633* A A AL.Power	
633* R State 3 (STATUS 3) 9 AL.Err 633* R State 3 (STATUS 3) 10 AL.SSR short 1 633* A A AL.Power	
633* R State 3 (STATUS 3) 10 AL.Sbr 633* R State 3 (STATUS 3) Table of State 3	
633* R State 3 (STATUS 3) 11 AL.LBA 633* R State 3 (STATUS 3) Table of State 3 bit 3 AL.SSR short 1 4 AL.SSR short 2	
633* R State 3 (STATUS 3) 12 AL.Power Table of State 3 bit 3 AL.SSR short 1 4 AL.SSR short 2 4	
633* R State 3 (STATUS 3) Table of State 3 bit 3 AL.SSR short 1 4 AL.SSR short 2	
bit 3 AL.SSR short 1 4 AL.SSR short 2 5 AL SSR short 2	
3 AL.SSR short 1 4 AL.SSR short 2	
4 AL.SSR short 2	
E AL COD short O	
D AL.SSK SNOT 3	
6 No voltage 1	
7 No voltage 2	
8 No Voltage 3	
9 No current 1	
10 No current 2	
11 No current 3	
634* R State 4 (STATUS 4) Table of State 4	
bit	
0 Temperature sensor broken	
1 over heat	
2 phase_softstart_active	
3 phase_softstart_end	
4 frequency_warning or monophase_missing_lin warning	line_
5 60Hz	
6 short_circuit_current in softstart di fase	
7 peak_current limiter in softstart di fase	
8 RMS current limiter a regime	
9 SSR_Safety (24V fan presence or SSR hardwa over temperature)	ware
10 Fuse open	
11 Current polarity check	
12 over_peak_HSC_current_limiter in softstart	
13 Current transformer sensor broken	

702	R	Voltage Status		Table of voltage status				
				bit				
				0	frequency_warning			
				1	10% unbalanced_line_warning			
			2 20% unbalanced_line_warning		20% unbalanced_line_warning			
				3	30% unbalanced_line_warning			
				4	rotation123_error			
				5	three-phase_missing_line_error			
				6	60Hz			

Functional Diagram

Instrument Configuration Sheet (40 to 300A Models)

Programmable Parameters

-					
		Defir	ition of Parameter	Note	Assigned Value
Instal	lation of	Modb	us Serial Network		
46	Cod	R	Instrument identification code		
45	ხ ጸნ	R/W	Select Baudrate - Serial 1		
626	50Rd	R/W	Select Baudrate - Serial 2		
47	98r	R/W	Select Parity - Serial 1		
627	P8-2	R/W	Select Parity - Serial 2		
Analo	g Input				
573	568	R/W	Analog Input		
574	LS8	R/W	Minimum scale limit analog input		
575	XSR	R/W Maximum scale limit analog input			
577	oFSR	F5R R/W Offset correction for analog input			
572	ln8	R	Value of the engineering reading analog input		
576	FLER	R/W	Low pass digital filter analog input		
Main	Input				
400	ERb	R/W	Probe, signal, enable, custom linearization and main input scale		
403	dPS	R/W	Decimal point position for input scale		
401	LoS	R/W	Min. scale limit for main input		
402	X (S	R/W	Max. scale limit for main input		
519 23	٥٢٢	R/W	Main input offset correction		
0 470	PV	R/W	Read of process variable (PV) engineering value		
349	DPV	R	Read of engineering value of process variable (PV) filtered by FLd		
85	Enn	R	Self-diagnosis error code for main input		
24	FLE	R/W	low pass digital filter for input signal		

179	FLB	R/W	Digital filter on oscillations of input signal		
86	5.00	R/W	Engineering value attributed to Point 0 (min. value of input scale)		
87	5.01	R/W	Engineering value attributed to Point 1		
88	5.02	R/W	Engineering value attributed to Point 2		
89	5.03	R/W	Engineering value attributed to Point 3		
90	5.84	R/W	Engineering value attributed to Point 43		
91	5.05	R/W	Engineering value attributed to Point 5		
92	5.06	R/W	Engineering value attributed to Point 6		
93	5.01	R/W	Engineering value attributed to Point 7		
94	5.08	R/W	Engineering value attributed to Point 8		
95	5.09	R/W	Engineering value attributed to Point 9		
96	5.40	R/W	Engineering value attributed to Point 10		
97	5.11	R/W	Engineering value attributed to Point 11		
98	5, 12	R/W	Engineering value attributed to Point 12		
99	5.43	R/W	Engineering value attributed to Point 13		
100	5.14	R/W	Engineering value attributed to Point 14		
101	5. (S	R/W	Engineering value attributed to Point 15		
102	5.48	R/W	Engineering value attributed to Point 16		
103	5. N	R/W	Engineering value attributed to Point 17		
104	S. 18	R/W	Engineering value attributed to Point 18		
105	S. 19	R/W	Engineering value attributed to Point 19		
106	5.20	R/W	Engineering value attributed to Point 20		
107	5.21	R/W	Engineering value attributed to Point 21		

108	5.22	R/W	Engineering value attributed to Point 22		
109	5.23	R/W	Engineering value attributed to Point 23		
110	5.24	R/W	Engineering value attributed to Point 24		
111	5.25	R/W	Engineering value attributed to Point 25		
112	5.28	R/W	Engineering value attributed to Point 26		
113	5.21	R/W	Engineering value attributed to Point 27		
114	5.28	R/W	Engineering value attributed to Point 28		
115	5.29	R/W	Engineering value attributed to Point 29		
116	5.30	R/W	Engineering value attributed to Point 30		
117	5.31	R/W	Engineering value attributed to Point 31		
118	5.32	R/W	Engineering value attributed to Point 32 (max. value of input scale)		
293	5.33	R/W	Engineering value attributed to minimum value of the input scale		
294	5.34	R/W	Engineering value attributed to maximum value of the input scale.		
295	5.35	R/W	Engineering value of input signal corresponding to temp. of 50°C.		

Load Current Value

746*	٤Ł	81	R	Ν	Minimum limit of CT ammeter input scale (phase 1)							
747	٤Ł	58	R	N	Ainimum limit of CT ammeter input scale (phase 2)		with 3-Phase Load					
748	٤Ł	83	R	N	Minimum limit of CT ammeter input scale (phase 3)		with 3-Phase Load					
405	ЯF	81	R	N	Ainimum limit of CT ammeter input scale (phase 1)							
413	ЯF	58	R	N	Minimum limit of CT ammeter		with 3-Phase Load					
414	ЯF	53	R	N	Ainimum limit of CT ammeter input scale (phase 3)			with 3-F	Phase Loa	ad		
220	оξ	:81	R/\	w	, Offset correction CT input (phase 1)					0.0 zone 1	0.0 zone 2	0.0 zone 3
415	ob	58:	R/\	w	Offset correction CT input (phase 2)							
416	05	:83	R/\	w	Offset correction CT input (phase 3)							
22 473-1	227 ₇₃₋₁₃₉ IERI R Instantaneous CT input valu (phase 1)		ie									
49(D	158	R Instantaneous CT input valu (phase 2)		ie	v	Vith 3-Phas	e Load				
49 [.]	1	158	3	R	Instantaneous CT input valu (phase 3)	ie	V	Vith 3-Phas	e Load			
468	}*	l lo	n	R	CT input value with output o (phase 1)	on						
498	8	150	n	R	CT input value with output o (phase 2)	on	V	Vith 3-Phas	e Load			
499	9	130	n	R	CT input value with output o (phase 3)	on	V	Vith 3-Phas	e Load			
219)*	FEE	8	R/W	W CT input value with output o (phases 1,2, 3)							
709	9	158	Peak ammeter input during phase softstart ramp)							
716	6* co5F R Power factor in hundredths		3									
753	3	LdP	}	R	Current RMS on load							
754	4	LdA	F	R	Current RMS on 3-phase loa	ad						

Value of Load Voltage

751*	Ld.V	R	Voltage on load	
710*	Latiniz	R	Load voltage instantaneous	
711*	Ld.Von	R	Load voltage with output activated	
752	LGN'F	R	Voltage on 3-phase load	

Line Voltage Value

453*	٤Ł	14	R	R N	linimum limit of TV voltmeter input scale (phase 1)					
454	٤٤	: 1/2	R	R N	linimum limit of TV voltmeter input scale (3-phase, 2-leg)			with 3-Pha	ase Load	
455	٤Ł	: 1/3	R	R N	Minimum limit of TV voltmeter input scale (3-phase, 3-leg)			with 3-Pha	ase Load	
410*	КF	14	R Maxim		laximum limit of TV voltmeter input scale (phase 1)					
417	HEV2 R		R N	linimum limit of TV voltmeter input scale (3-phase, 2-leg)			with 3-Pha	ase Load		
418	НĿ	: VB	R	N	linimum limit of TV voltmeter input scale (3-phase, 3-leg)			with 3-Pha	ase Load	
411*	٥ł	:84	R/	w o	Offset correction voltmeter tran former input TV (phase 1)					
419	٥٤	50:	R/	W O	set correction voltmeter trans- mer input TV (3-phase, 2-leg)		With	3-Phase Load		
420	ot	otU3 R/W		w	Offset correction CT input (3-phase, 3leg)		With	3-Phase Load		
232 485)* -)	158	ł	R	Value of voltmeter input (phase	e 1)				
492	2	158	5	R	Value of voltmeter input (3-phase, 2-leg)			With 3-Phase Load		
493	3	158	3	R	Value of voltmeter input (3-phase, 3-leg)			With 3-Phase Load		
322)* -	11/F	{	R	Value Filtered of voltmeter inp (phase 1)	out				
496	6	11/F	2	R	Value Filtered of voltmeter inp (3-phase, 2-leg)	but		With 3-Phase Load		
497	7	IVF	1	R	Value Filtered of voltmeter inp (3-phase, 3-leg)	but		With 3-Phase Load		
412)*	FEE	U	R/W	Digital Filter TV auxiliary inpu (phase 1,2,3)	ut				
315	;*	۶۳٤	9	R	Voltage frequency in tenthz of	Hz				

Power On Load

719*	LdP	R	Power on load
720	LdPE	R	Power on Load 3-Phase
749*	Ldł	R	Impedance on load
750	Ld IE	R	Impedance on load 3-phase
531	1 363	R	Energy on load
541	LBEIE	R	Energy on 3-phase load
510	5363	R	Energy on load
541	LBEIE	R	Energy on 3-phase load
114 bit*	L dE l	R/W	OFF = - ON = Reset Ld.E1
115* bit	1985	R/W	OFF = - ON = Reset Ld.E1

Auxiliary Analog Input (LIN/TC)

	-				
194	SI 8	R/W	Select type of auxiliary input sensor 2		
553	8 (3	R/W	Select type of auxiliary input sensor 3		
554	8 (4	R/W	Select type of auxiliary input sensor 4		
555	8 (S	R/W	Select type of auxiliary input sensor 5		
181	563	R/W	Definition of auxiliary analog input function		
677	596	R/W	Decimal point position for auxiliary input scale		
568	69b	R/W	Decimal point position for auxiliary input scale 3		
569	дΡч	R/W	Decimal point position for auxiliary input scale 4		
570	dPS	R/W	Decimal point position for auxiliary input scale 5		
404	553	R/W	Minimum limit auxiliary input scale		
556	LS3	R/W	Minimum limit auxiliary input scale 3		
557	LSH	R/W	Minimum limit auxiliary input scale 4		
558	LSS	R/W	Minimum limit auxiliary input scale 5		
603	XSS	R/W	Maximum limit auxiliary input scale 2		

59	XS3	R/W	Maximum limit auxiliary input scale 3
560	НSЧ	R/W	Maximum limit auxiliary input scale 4
561	XSS	R/W	Maximum limit auxiliary input scale 5
605	oFS2	R/W	Offset correction for auxiliary input 2
565	oFS3	R/W	Offset correction for auxiliary input 3
566	oFSM	R/W	Offset correction for auxiliary input 4
567	oFSS	R/W	Offset correction for auxiliary input 5
602	-In2	R	Value of auxiliary input 2
547	ln3	R	Value of auxiliary input 3
548	lo4	R	Value of auxiliary input 4
549	InS	R	Value of auxiliary input 5
606	5-3	R	Self-diagnosis error code of auxiliary input 2
550	8-3	R	Self-diagnosis error code of auxiliary input 3
551	Елч	R	Self-diagnosis error code of auxiliary input 4
552	ErS	R	Self-diagnosis error code of auxiliary input 5
604	FLF5	R/W	Digital filter for auxiliary input 2
562	FLEB	R/W	Digital filter for auxiliary input 3
563	FLEM	R/W	Digital filter for auxiliary input 4
564	FLES	R/W	Digital filter for auxiliary input 5

Digital Input

140	მინ.	R/W		Digital Input Function	
618	5.0, b	R/W		Digital Input Function 2	
694	6.3,6	R/W		Digital Input Function 3	
317		R		State of digital inputs INPUT DIG	
68 bit	STATE OF DIGITAL INPU	JT 1	R	OFF = Digital input 1 off ON = Digital input 1 on	
92 bit	STATE OF DIGITAL INPU	JT 2	R	OFF = Digital input 2 off ON = Digital input 2 on	
67 bit	STATE OF DIGITAL INPU	JT 3	R	OFF = Digital input 3 off ON = Digital input 3 on	
518	InPWM			PWM input value	

Generic Alarms AL1, AL2, AL3 and AL4

215	8 le	R/W	Select reference variable alarm 1		
216	825	R/W	Select reference variable alarm 2		
217	836	R/W	Select reference variable alarm 3		
218	ЯЧс	R/W	Select reference variable alarm 4		
12 475-177		R/W	Setpoint alarm 1 (scale points)		
13 476-178	, AF5	R/W	Setpoint alarm 2 (scale points)		
1 4 52-479	RL 3	R/W	Setpoint alarm 3 (scale points)		
58 480	AL 4	R/W	Setpoint alarm 4 (scale points)		
27 187	HA I	R/W	Hysteresis for alarm 1		
30 188	HA5	R/W	Hysteresis for alarm 2		
53 189	<u>жуз</u>	R/W	Hysteresis for alarm 3		
59	нуч	R/W	Hysteresis for alarm 4		
406	8 IE	R/W	Alarm type 1		
407	855	R/W	Alarm type 2		
408 54	835	R/W	Alarm type 3		

409	845	R/W		Alarm	type 4		
46 bit	AL1	direct/	inverse	R			
47 bit	AL1 a	bsolute	e/relative	R			
48 bit	AL1 no	rmal/sy	rmmetrical	R			
49 bit	AL1 disa	abled a	t switch on	R			
50 bit	AL1	with m	nemory	R			
54 bit	AL2	direct/	inverse	R			
55 bit	AL2 a	bsolute	e/relative	R			
56 bit	AL2 no	rmal/sy	mmetrical	R			
57 bit	AL2 disa	abled a	t switch on	R			
58 bit	AL2	with m	nemory	R			
36 bit	AL3	direct/	inverse	R			
37 bit	AL3 a	bsolute	e/relative	R			
38 bit	AL3 no	rmal/sy	rmmetrical	R			
39 bit	AL3 disa	abled a	t switch on	R			
40 bit	AL3	with m	nemory	R			
70 bit	AL4	direct/	inverse	R			
71 bit	AL4 a	bsolute	e/relative	R			
72 bit	AL4 noi	rmal/sy	rmmetrical	R			
73 bit	AL4 disa	abled a	t switch on	R			
74 bit	AL4	with m	nemory	R			
25 20-28-	142 Lo	L R	/W Low remo	est setta ote and	able limit SP, SP absolute alarms		
26 21-29-	143 H I	L R	/W High remo	est setta ote and	able limit SP, SP absolute alarms		
195	8Ln	R/W	Select nu	mber of	f enabled alarms		
140	9 IC	R/W	Dig	jital inpu	ut function		

618	50) b	R/W		Digi	tal input function 2
79 bit	Reset Al	arm La	tch	R/W	OFF = - ON = Reset alarm latch
4 bit	State o	f Alarm	1	R	OFF = Alarm off ON = Alarm on
5 bit	State o	f Alarm	2	R	OFF = Alarm off ON = Alarm on
62 bit	State o	f Alarm	3	R	OFF = Alarm off ON = Alarm on
69 bit	State o	f Alarm	4	R	OFF = Alarm off ON = Alarm on
318		R		State c	of alarm ALSTATE IRQ

LBA Alarm (Loop Break Alarm)

195	8Ln	R/W	Select	number of enabled alarms	
44	ԼԵԵ	R/W	Delay ti	me for LBA alarm activation	
119	168	R/W	Limit of	supplied power in presence of LBA alarm	
81 bit	Reset LB	8A alarm	n R	OFF = - ON = Reset alarm LBA	
8 bit	State c alaı	of LBA rm	R	OFF = LBA off ON = LBA alarm on	

Heater Break Alarm

195	8Ln	R/W	Select	t num	ber of enabled alarms					
57*	НЪΡ	R/W		HB	alarm function					
56*	ЯЪЕ	R/W	Delay t	time f	or HB alarm activation					
55*	янь і	R/W	HB ala s	arm se scale	etpoint (ammeter input points - Phase 1)					
502	8HP5	R/W	HB ala s	arm se scale	etpoint (ammeter input points - Phase 2)					
503	Яньз	R/W	HB ala s	arm se scale	etpoint (ammeter input points - Phase 3)					
737*	ньр	R/W	Percent meter i	tage l input	HB alarm setpoint (am- scale points - Phase 3)					
112* bit	Calib alarm	ration H 1 setpoi	IB nt	R	OFF = Calibration not e ON = Calibration ena	ena abl	abled ed			
742*	нрғи	R/W	c c	CT rea	d in HB calibration			0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
452*	НРЕЛ	R/W	и т	⁻V rea	d in HB calibration			0.0 Zone 1	0.0 Zone 2	0.0 Zone 3

743*	НЬ₽ ₩	R/W	Ou.P power in calibration	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
758*	IrtAd	R/W	HB calibration with IR lamp current at 100% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
759*	16281	R/W	HB calibration with IR lamp current at 50% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
760*	14582	R/W	HB calibration with IR lamp current at 30% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
761*	16283	R/W	HB calibration with IR lamp current at 20% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
767*	16284	R/W	HB calibration with IR lamp current at 15% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
768*	IntRS	R/W	HB calibration with IR lamp current at 10% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
769*	IntAS	R/W	HB calibration with IR lamp (only in mode PA) current at 5% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
382*	14287	R/W	HB calibration with IR lamp (only in mode PA) current at 3% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
383*	Irt88	R/W	HB calibration with IR lamp (only in mode PA) current at 2% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
384*	Int89	R/W	HB calibration with IR lamp (only in mode PA) current at 1% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
445*	1-EV0	R/W	HB calibration with IR lamp Voltage at 100% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
446*	1-271	R/W	HB calibration with IR lamp Voltage at 50% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
447*	1-112	R/W	HB calibration with IR lamp Voltage at 30% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
448*	1-EV3	R/W	HB calibration with IR lamp Voltage at 20% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
449*	1681/4	R/W	HB calibration with IR lamp Voltage at 15% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
450*	16872	R/W	HB calibration with IR lamp Voltage at 10% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
451*	1-EV6	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 5% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
390*	1-573	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 100% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
391*	1-EV8	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 100% conduction	0.0 Zone 1	0.0 Zone 2	0.0 Zone 3

392*	1-273	R/	w	HB c Volta	alibr (only age a	ation with IR lamp / in mode PA) at 1% conduction				0.0 Zone 1	0.0 Zone 2	0.0 Zone 3
744	Н	Ырғ			R	HB alarm setpoint function of power or	as Ioad					
26* bit	Stare of or POW	HB al ER_F	arm ault	R/W		OFF = Alarm off ON = Alarm on						
76* bit	State of pha	HB Al ase 1	arm	R								
77 bit	State of pha	HB A ase 2	arm	R		with 3-phase load						
78 bit	State of pha	HB A ase 3	arm	R		with 3-phase load						
504		R	St	tates of (fo	f ala or 3-	rm HB ALSTATE_HB -phase loads)						
512*		R		State (for	es of sing	f alarm ALSTATE le-phase loads)						
318		R		State of	of al	arm ALSTATE IRQ						

Alarm SBR - ERR (Probe in short or connection error)

229	rEL.	R/W	Fault probe)	action (in case of broken Sbr, Err Only for main input		
228	FRP	R/W	Fault cor	action power (supplied in ndition of broken probe)		
85	Enn	R	Self-	diagnosis error code for main input		
9 bit	State of SB	Input in BR	R	OFF = - ON = Input in SBR		

Power Fault ALARMS (SSR_SHORT, NO_VOLTAGE and NO_CURRENT)

660*	hd2	R/W	Enab	le POV	/ER_FAUL	Γ Alarms
661	ძნხ	R/W	Refresh	n rate in	TA (Only F	or C4 1TA)
662*	405	R/W	Filter SSR_ al	in Time _OPEN arms (C	For NO_V and NO_C Only For C4	OLTAGE, URRENT 1TA)
105 bit	Reset S VOLT	SSR_O AGE/N	PEN/SSI	R_SHOI RENT A	RT,NO_ larms	R/W
96* bit	State SSR_SF	e of ala IORT p	irm hase 1	R		
97 bit	State SSR_SF	e of ala IORT p	ırm hase 2	R		
98 bit	State SSR_SF	e of ala IORT p	ırm hase 3	R		
99 bit	State NO VOL	e of ala TAGE c	irm bhase 1	R		

100 bit	State of alarm NO_VOLTAGE phase 2	R	
101 bit	State of alarm NO_VOLTAGE phase 3	R	
102 _{bit}	State of alarm NO_CURRENT phase 1	R	
103 bit	State of alarm NO_CURRENT phase 2	R	
104 bit	State of alarm NO_CURRENT phase 3	R	

Alarm due to overload

655*	R	INNTC_SSR
534*	R	INNTC_LINE
535*	R	INNTC_LOAD
679*	R	INNTC_SSR_MAX

Fuse Open and Short Circuit Current Alarms

456	Fro	R/W	Number FUSE_OPEN / S	of resta SHORT_	arts in case of _CIRCUIT_CURRENT	0.0
109 bit	D9 RESET FUSE_OPEN /SHORT_ bit CIRCUIT_CURRENT ALARMS R/				OFF = - ON = Reset FUSE_OPEN / SHORT_CIRCUIT_CURRENT alarms	
116 bit		RESE F0	TTING . c ¦	R/W	OFF = - ON = Reset count FO.c1	

*Address 116 bit is 40-300A Only

634*		R	State 4 (STATUS4)	Table of Instrument state 4
434*	FOcl	R	Counter 1: FUSE_OPEN events	
436*	50c2	R	Counter 2: FUSE_OPEN events	

*Address 434 & 436 bit are 40-300A Only

Outputs

160*	rt (R/W	Allocation of reference signal	
163*	r12	R/W	Allocation of reference signal	
166*	rt3	R/W	Allocation of reference signal	
170*	հեԿ	R/W	Allocation of reference signal	
171*	rtS	R/W	Allocation of reference signal	

172*	rlõ	R/W	AI	locatio	n of reference signal			
152* 9	CE (R/W		OUT 1 (Heat) Cycle time				
159*	655	R/W		OUT 2	? (Cool) Cycle time			
308 319		R		State rL.x MASKOUT				
12* bit	STA	TE rL.1		R	OFF = Output off ON = Output on			
13* bit	STA	TE rL.2		R	OFF = Output off ON = Output on			
14* bit	STA	TE rL.3	}	R	OFF = Output off ON = Output on			
15* bit	STA	TE rL.4		R	OFF = Output off ON = Output on			
16* bit	STATE rL.5			R	OFF = Output off ON = Output on			
17* bit	STA	TE rL.6	;	R	OFF = Output off ON = Output on			

Allocation of Physical Outputs

607	ו ליטס	R/W	Allocati	on of p	hysical output OUT 1		
608	ουες	R/W	Allocati	on of p	hysical output OUT 2		
609	ουέβ	R/W	Allocati	on of p	hysical output OUT 3		
610	ουεΥ	R/W	Allocati	on of p	hysical output OUT 4		
611	ουξ	R/W	Allocati	ion of p	hysical output OUT 5		
612	ουεδ	R/W	Allocati	ion of p	hysical output OUT 6		
613	ουε٦	R/W	Allocati	ion of p	hysical output OUT 7		
614	ουε8	R/W	Allocati	on of p	hysical output OUT 8		
615	ουε9	R/W	Allocati	ion of p	hysical output OUT 9		
616	out 10	R/W	Allocati	on of pl	hysical output OUT 10		
82 bit	State of	output	OUT1	R	OFF = Uscita disattiv ON = Uscita attiva	a	
83 bit	State of	output	OUT2	R			
84 bit	State of	output	OUT3	R			

85 bit	State of ou	tput Ol	JT4	R	
86 bit	State of ou	tput Ol	JT5	R	
87 bit	State of ou	tput Ol	JT6	R	
88 bit	State of ou	tput Ol	JT7	R	
89 bit	State of ou	tput Ol	JT8	R	
90 bit	State of ou	tput Ol	JT9	R	
91 bit	State of out	put OL	JT10	R	
664 R State outputs (MASKOUT_C				outs (MASKOUT_OUT)	

Setpoint Settings

138 16-472	SP	R/W		∟ocal setpoint	
181	£65	R/W	Auxiliary	analog input function	
18 136-249	FbS	R/W	Remote se manu	etpoint (SET Gradient for al power correction)	
25 20-28-142	Lol	R/W	Lowest remote	settable limit SP, SP and absolute alarms	
26 21-29-143	H IL	R/W	Highest remote	settable limit SP, SP and absolute alarms	
10 bit	LOCAL / REMOTE R OFF = Enable local se ON = Enable remote s			OFF = Enable local se ON = Enable remote s	etpoint etpoint
305*		R/W	Instrum	ent state (STATUS_W)	
1 137-481	SPR	R/W	P	Active Setpoint	
4		R	Dev	viation (SPA - PV)	

Setpoint Control

234 22	GSP	R/W	Set Gradient	
259	652	R/W	Set Gradient for SP2	
265	Kot	R/W	Select hot runner functions	
191	hd l	R/W	Enable multiset instrument control via serial	
230 482	SP (R/W	Setpoint 1	
231 ⁴⁸³	585	R/W	Setpoint 2	

140	8 IG I	R/W	Digital input function	
618	9 ICS	R/W	Digital input function 2	
75 bit	SELECT SP1 / SP2	R	OFF = Select SP1 ON = Select SP2	
305*		R/W	Instrument state	

PID Heat/ Cool Control

617*	SPU	R/W	Enable zone process variable	
180	(Ctr	R/W	Control Type	
5 148-149	SPU	R/W	Enable zone process variable	
7 150	ክ ዘረ	R/W	Integral heating time	
8 151	հժե	R/W	Deriviative heating time	
6	сРБ	R/W	Proportional band for cooling or hysteresis ON/OFF	
76	c IE	R/W	Integral cooling time	
77	cdt	R/W	Derivative cooling time	
513	ENE	R/W	Select cooling fluid	
152 9	653	R/W	Cycle time OUT 1 (Heat)	
159	655	R	Cycle time OUT 2 (Cool)	
2 * 132-471	0.0	R	Value control outputs (+Heat / -Cool)	
39 484	сSP	R/W	Cooling setpoint relative to heating setpoint	
78	r St	R/W	Manual reset (value added to PID input)	
516	PrS	R/W	Reset power (value added directly to PID output)	
79	RrS	R/W	Antireset (limits integral PID action)	
80	FFd	R/W	Feedforward (value added to PID output after processing)	
42 146	Һ₽Ӿ	R/W	Maximum limit heating power	
254	հԲԼ	R/W	Min. limit heating power (not avail- able for double action heat/cool)	

43	сРХ	R/W	Maximum limit cooling power	
255	cPL	R/W	Min. limit cooling power (not avail- able for double action heat/cool)	
765*	PPEr	R/W	Percentageof output power	
766*	PoFS	R/W	Offset output power	
763*	GoUE	R/W	Gradient for output control	
764*	LoP	R/W	Offset output power	

Automatic/Manual Control

252*		R/W		MANUAL_POWER	
2 132-471	0.0	R/W		Value control outputs (+Heat / -Cool)	
140	01 B	R/W		Digital input function	
618	50) b	R/W		Digital input function 2	
1 bit	t AUTO/MAN		R/W	OFF = Automatic ON =Manual	
305		R/W		Instrument state	

Hold Funtion

140	<u>а IC</u>	R/W	Digital input function	
618	50) 6	R/W	Digital input function 2	
64 bit	HOLD	R/W	OFF = hold off ON = hold on	

Manual Power Correction

505*	in IF	R/W	Line voltage		
506*	cor	R/W	Manual power correction based on line voltage		
18 136-249	SPr	R/W	Remote setpoint (SET Gradient for power correction		

Autotuning

31	Stu	R/W	Enable selftuning, autotuning, softstart		
140	JI 6	R/W	Digital input function		
618	50) b	R/W	Digital input function 2		
29 bit	AUTOTUNING R/W		R/W	OFF = Stop Autotuning ON = Start Autotuning	
-----------	------------------------------	-----	-----	--	--
28 bit	AUTOTUNING STATE R/W		R/W	OFF = Autotuning in Stop ON = Autotuning in Start	
68 bit	DIGITAL INPUT STATE 1		R/W	OFF = Digital input 1 off ON = Digital input 1 on	
92 bit	DIGITAL INPUT STATE 2 R/W		R/W	OFF = Digital input 2 off ON = Digital input 2 on	
296		R/W	En	nable autotuning and selftuning state (FLG_PID)	
305*		R/W		Instrument state	

Selftuning

31	Stu	R/W	/	Enable selftuning, autotuning, softstart	
140	<u>а</u> Ю	R/W	/	Digital input function	
618	50) b	R/W	/	Digital input function 2	
3 bit	SELFTUNIN	١G	R/W OFF = Stop Selftuning ON = Start selftuning		
0 bit	SELFTUNIN STATE	١G	R	OFF = Selftuning in Stop ON = Selftuning in Start	
68 bit	DIGITAIL INPUT STAT	E 1 R/W		OFF = Digital input 1 off ON = Digital input 1 on	
92 bit	DIGITAIL INPUT STAT	E 2	R/W	OFF = Digital input 2 off ON = Digital input 2 on	
296		R	En	nable autotuning and selftuning state (FLG_PID)	
305*		R/W	/	Instrument state	

Softstart

31	Stu	R/W		Enable selftuning, autotuning, softstart		
147	SoF	R/W		Softstart time		
63 bit	SOFTSTART STATE R/W		R/W	OFF = Softstart off ON = Softstart on		

Software Shutdown

|--|

Software Power On

140	9 IC	R/W		Digital input function	
618	500 6	R/W		Digital input function 2	
700	oFFt	R/W		Software OFF	
11 bit	SOFTWA ON/OF	RE F	R/W	OFF = On ON =Off	
68 bit	DIGITAIL INPUT STATE 1		R/W	OFF = Digital input 1 off ON = Digital input 1 on	
92 bit	DIGITAIL INPUT STATE 2 R/W		R/W	OFF = Digital input 2 off ON = Digital input 2 on	
305*		R/W		State (STATUS_W)	

Fault Action Power

265	Kot	R/W	Select	hot runner functions	
228	FRP	R/W	Fault act conditi	ion power (supplied in ons of broken probe)	
26 bit	STATE OF H OR POWE	IB ALA R_FAU	RM LT R/W	OFF = Alarm off ON = Alarm on	
80 bit	State of po	wer ala	rm R/W	OFF = Alarm off ON = Alarm on	

Power Alarm

261	ხნხ	R/W	Stability band (hot runners power alarm function)		
262	685	R/W	Power alarm band (hot runners power alarm function)		
260	PFE	R/W	Power alarm delay times		
160*	et l	R/W	Allocation of reference signal		
163*	515	R/W	Allocation of reference signal		
166*	rt3	R/W	Allocation of reference signal - Output OR		
170*	հեԿ	R/W	Allocation of reference signal - Output AND		
171*	rt5	R/W	Allocation of reference signal - Output OR		
172*	rlő	R/W	Allocation of reference signal - Output AND		

Preheating Softstart

	Stu	R/W		Enable selftuning, autotuning, softstart		
263	SPS	R/W	(Softstart Setpoint (preheating hot runners)		
264	SoP	R/W	(Softstart power (preheating hot runners)		
147	SoF	R/W		Softstart time		
63 bit	SOFTSTA STATE	\RT	R/W	OFF = Softstart in Stop ON = Softstart in Start		

Operating Hour Meter

396	OXc	R/W	Hours of Operation
-----	-----	-----	--------------------

Trigger Modes

703*	XdS	R/W	Enable Trigger Modes	
707*	ԲսեԶ	R/W	Max. limit of RMS current in normal operation	
704*	ЪРСУ	R/W	Minimum number of cycles of BF modes	

Soft Start

630*	PSH (R/W	Maxii	Maximum phase of phase softstart ramp				
705*	PSEN	R/W	Durat	ion of phase softstart ramp				
629*	PSoF	R/W	Min. ne reactiva	on-conduction time to te phase softstart ramp				
706*	PSER	R/W	Maxim during	num peak current limit phase softstart ramp				
108* bit	Restart o softstart	f phase t ramp	R/W	OFF = Restart not en ON = Restart enab	abled led			
106* bit	* State of phase softstart ramp		R	OFF = Ramp not ac ON = Ramp activ	ctive ⁄e			
107* bit	State of phase R softstart ramp		OFF = Ramp not en ON = Ramp ende	ided ed				

Delay Triggering

708*	dLt	R	/W Delay triggering (first trigger only)			
738*	dLoF	R/W	Minimum non-conduction time to reactivate delay triggering II			

Feedback Modes

730*	НЧБ	R/W	En	nable f	eedback modes						
731*	Cor v	R/W	Maximum correction of voltage feedback								
732*	Corl	R/W	Maximum correction of current feedback								
733*	CorP	R/W	Maximum correction of power feedback								
734*	r (F V	R/W	Voltage feedback reference								
735*	r iF V	R/W		Volta re	ge feedback eference						
736*	r iSP	R/W		Pow r	er feedback eference						
741*	Fbit	R/W	Feedback response speed								
113* bit	Calibrati feedba	on of v ck refer	oltage rence R/W OFF = Calibration not ON = Calibration enal			ena olec	abled I				
757*	Re iF	R	Feedback					Setpoint of V, I, P to	maintain	on load	

Heuristic Power Control

680	hd3	R/W	Enable heuristic power control		
681	IHEU	R/W	Maximum current for heuristic power control		

Heterogeneous Power Control

682	ႹᲫႷ	R/W	Enable heterogeneous power control	
683	IHEF	R/W	Maximum current for heterogeneous power control	

Virtual Instrument Control

191	hd l	R/W	Enable multiset instrument control via serial	
224*	Sin	R/W	Control Inputs from Serial	
225	50u	R/W	Control Outputs from Serial	
628	SU (R/W	Control LEDs and digital inputs from serial	

HW/SW Data

122	UPd	R	Software version code	
85	Err	R	Self-diagnosis error code for main input	
606	873	R	Self-diagnosis error code for auxiliary input 2	
550	863	R	Self-diagnosis error code for auxiliary input 3	(40 to 300A Only)
551	Елч	R	Self-diagnosis error code for auxiliary input 4	(40 to 300A Only)
552	ErS	R	Self-diagnosis error code for auxiliary input 5	(40 to 300A Only)
190	Chd	R	Hardware configuration codes	
508	[H3 I	R	Hardware configuration codes 1	
543	2943	R	Hardware configuration codes 2	
835	ER43	R	Hardware configuration codes 3	(40 to 300A Only)
693 697	UPdF	R	Fieldbus software version	
695	CodF	R	Fieldbus node	
696	680F	R	Fieldbus baudrate	
346		R	State of jumper	
120		R	Manufacturer - Trade Mark	
121		R	Device ID (C4)	
197	LdSE	R/W	RN LED Status Function	
619	563	R/W	ER LED status function	
620	663	R/W	Function of LED DI1	
621	194	R/W	Function of LED DI2	
622	LdS	R/W	Function of LED O1	
623	Ldõ	R/W	Function of LED O2	
624	61	R/W	Function of LED O3	
625	Ld.8	R/W	Function of LED O4	

305*	R/W	State (STATUS_W)	
467*	R	State (STATUS)	
469*	R	State 1 (STATUS1)	
632*	R	State 2 (STATUS2)	
633*	R	State 3 (STATUS3)	
634*	R	State 4 (STATUS4)	
702	R	Voltage Status	

Instrument Configuration Sheet (400 to 600A Models)

		Defir	nition of Parameter	Note	Assigned Value
Instal	lation of	Modb	us Serial Network		
46	Cod	R	Instrument identification code		
45	ხ Яυ	R/W	Select Baudrate - Serial 1		
626	68u2	R/W	Select Baudrate - Serial 2		
47	PRr	R/W	Select Parity - Serial 1		
627	P8-2	R/W	Select Parity - Serial 2		
890	685	R/W	Timeout for communication error		
891*	CEr	R/W	Mode for communication error		
892*	CEP	R/W	Output power when communication is active		

Analog Input

573	£98	R/W	Analog Input 1		
837	Fb85	R/W	Analog Input 2		
844	£983	R/W	Analog Input 3		
574	LSR	R/W	Minimum scale limit analog input		
838	L 582	R/W	Minimum scale limit analog input 2		
845	L 5 8 3	R/W	Minimum scale limit analog input 3		
575	X58 (R/W	Maximum scale limit analog input 1		
839	K282	R/W	Maximum scale limit analog input 2		
846	XS83	R/W	Maximum scale limit analog input 3		
577	oFSR	R/W	Offset correction for analog input		
841	oFSRa	R/W	Offset correction for analog input 2		
848	oFSR	R/W	Offset correction for analog input 3	3	

572	In8 I	R	Value of the engineering reading analog input 1			
836	58ni	R	Value of the engineering reading analog input 2			
843	In83	R Value of the engineering reading analog input 3				
576	FLER (R/W	Low pass digital filter analog input 1			
840	FLLR2 R/W Low pass digital filter analog input 2		Low pass digital filter analog input 2			
847	FLLR3 R/W Low pass digital filter analog input 3		Low pass digital filter analog input 3			

Main Input

400	£УР	R/W	Probe, signal, enable, custom linearization and main input scale		
403	dPS	R/W	Decimal point position for input scale		
401	LoS	R/W	Min. scale limit for main input		
402	X (S	R/W	Max. scale limit for main input		
519 23	٥٤٢	R/W	Main input offset correction		
0 470	PV	R/W	Read of process variable (PV) engineering value		
349	DPV	R	Read of engineering value of process variable (PV) filtered by FLd		
85	Enn	R	Self-diagnosis error code for main input		
24	FLE	R/W	low pass digital filter for input signal		

Load Current Value

746*	LERI	R	Minimum limit of CT ammeter input scale (phase 1)
747	1585	R	Minimum limit of CT ammeter input scale (phase 2)
748	LER3	R	Minimum limit of CT ammeter input scale (phase 3)
405*	HER I	R	Minimum limit of CT ammeter input scale (phase 1)
413	HF85	R	Minimum limit of CT ammeter input scale (phase 2)
414	HES3	R	Minimum limit of CT ammeter input scale (phase 3)
220*	ot81	R/W	Offset correction CT input (phase 1)
415	o£82	R/W	Offset correction CT input (phase 2)

416	٥١	:83	83 R/I		Offset correction CT input (phase 3)
393	r	٤R	R/	W	Offset correction for external CT input
227 485-139-755		۱۶B	1	R	Instantaneous CT input value (phase 1)
490 494)	158	2	R	Instantaneous CT input value (phase 2)
4 91 495		158	3	R	Instantaneous CT input value (phase 3)
468		l lo	n	R	CT ammeter input value with output activated (phase 1)
498	498 1 2 00		n	R	CT ammeter input value with output activated (phase 2)
499)	130	n	R	CT ammeter input value with output activated (phase 3)
709)	158	ρ	R	Peak ammeter input during phase softstart ramp
716	;	coS	F	R	Power factor in hundredths
753*		LdF	}	R	Current RMS on load
754		LdA	F	R	Current RMS on 3-phase load
219	FE.E8		R/W	CT ammeter input digital filter	

Value of Load Voltage

751*	L8.V	R	Voltage on load				
710*	LU.VIS	R	Load voltage instantaneous				
711*	Ld.Von	R	Load voltage with output activated				
752*	LdV.E	R	R Voltage on 3-phase load				
439*	LE.VL	R	Minimum limit of TV_LOAD voltmeter input scale				
443*	HE.VL	R	Maximum limit of TV_LOAD voltmeter input scale				
444	ot.VL	R/W	Offset correction voltmeter transformer input TV_LOAD				
442	FE.EVL	R/W	Digital filter voltmeter input TV_LOAD	0.020.0 sec	0.1 zone 1	0.1 zone 2	0.1 zone 3

Line Voltage Value

453*	LENT	R	Minimum limit of TV voltmeter input scale (phase 1)
454	LENS	R	Minimum limit of TV voltmeter input scale (3-phase, 2-leg)
455	LEVB	R	Minimum limit of TV voltmeter input scale (3-phase, 3-leg)
410	нерт	R	Maximum limit of TV voltmeter input scale (phase 1)
417	HE NS	R	Minimum limit of TV voltmeter input scale (3-phase, 2-leg)
418	же из	R	Minimum limit of TV voltmeter input scale (3-phase, 3-leg)
412*	FEEU	R/W	Digital filter TV auxiliary input (phase 1,2,3)

Power on Load

880 719 LSW	LdP	R	Power on load
882 720 LSW	LdPt	R	Power on Load 3-Phase
749*	161	R	Impedance on load
750	Ld IE	R	Impedance on load 3-phase
531*	L dE l	R	Energy on load
541	LGE IF	R	Energy on 3-phase load
510*	1985	R	Energy on load
541	L d E I E	R	Energy on 3-phase load
114 bit	LdE I	R/W	OFF = - ON = Reset Ld.E1
115 bit	5363	R/W	OFF = - ON = Reset Ld.E1

Digital Inputs

140	8 (G)	R/W		Function of digital input 1		
618	50) B	R/W		Function of digital input 2		
694	8 IG3	R/W		Function of digital input 3		
712	8464	R/W		Function of digital input 4		
385	EPd IG R/W		N	Defining the type of digital inputs		

356	թենել	I	R/W		Timeout for input PWM 1						
357	P0055	1	R/W	Timeout for input PWM 2							
362	թենեց	ł	R/W			Timeout for input PWM 3					
438	FEPLO	1	R/V	V	, Digital low pass filter input PWM 1						
372	FEPLOI	2	R/V	V		Digital low pass filter input PWM 2					
373	FEPLO	3	R/V	V		Digital low pass filter input PWM 3					
68 bit	State of Digital Input 1				R	OFF = Digital input 1 off ON = Digital input 1 on					
92 bit	State of I Input	Digi [.] 2	tal		R	OFF = Digital input 2 off ON = Digital input 2 on					
67 bit	State of I Input	Digi 3	tal		R OFF = Digital input 3 off ON = Digital input 3 on						
66 bit	State of I Input	Digi 4	tal		R OFF = Digital input 4 off ON = Digital input 4 on						
317		R		St	ate c	of digital inputs INPUT DIG					
518	In.PWM	1	R			PWM 1 input value					
435	In.PWM	2	R		PWM 2 input value						
457	In.PWM 3 R					PWM 3 input value					

Alarms

215*	R In	R/W	Select reference variable alarm 1	
216*	825	R/W	Select reference variable alarm 2	
217*	83r	R/W	Select reference variable alarm 3	
218*	RYr	R/W	Select reference variable alarm 4	
12* 475-177	, AL I	R/W	Setpoint alarm 1 (scale points)	
13 * 476-178	, AL 2	R/W	Setpoint alarm 2 (scale points)	
14* 52-479	RL 3	R/W	Setpoint alarm 3 (scale points)	
58* 480	RLY	R/W	Setpoint alarm 4 (scale points)	
27 187	HY I	R/W	Hysteresis for alarm 1	

30* 188	885	R/W	Hyst	teresis t	for alarm 2		
53* 189	893	R/W	Hyst	teresis t	for alarm 3		
59*	нуч	R/W	Hyst	teresis t	for alarm 4		
406*	8 IE	R/W		Alarm t	type 1		
407*	855	R/W		Alarm 1	type 2		
408* 54	835	R/W		Alarm 1	type 3		
409*	845	R/W		Alarm t	type 4		
46* bit	AL1	direct/i	nverse	R			
47* bit	AL1 a	bsolute	/relative	R			
48* bit	AL1 noi	rmal/sy	mmetrical	R			
49* bit	AL1 disa	abled at	t switch on	R			
50* bit	AL1	with m	emory	R			
54* bit	AL2 direct/inverse			R			
55* bit	AL2 a	bsolute	/relative	R			
56* bit	AL2 noi	rmal/sy	mmetrical	R			
57* bit	AL2 disa	abled at	t switch on	R			
58* bit	AL2	with m	emory	R			
36* bit	AL3	direct/i	nverse	R			
37* bit	AL3 a	bsolute	/relative	R			
38* bit	AL3 noi	rmal/sy	mmetrical	R			
39* bit	AL3 disa	abled at	t switch on	R			
40* bit	AL3	with m	emory	R			
70* bit	AL4	direct/i	nverse	R			
71* bit	AL4 a	bsolute	/relative	R			
72* bit	AL4 noi	rmal/sy	mmetrical	R			

73* bit	AL4 disa	bled at	switch on	R			
74* bit	AL4 with memory R						
195*	8ლი	R/W	Select nu	mber of	f enabled alarms		
140	9 IC	R/W	Dig	jital inpu	ut function		
618	501 b	R/W	Digi	tal input	t function 2		
694	8 IG3	R/W	Digi	tal input	t function 3		
712	8 IG4	R/W	Digi	tal input	t function 4		
79* bit	Reset Al	arm Lat	tch R/W	ON =	OFF = - Reset alarm latch		
4* bit	State o	f Alarm	1 R	OI O	FF = Alarm off N = Alarm on		
5* bit	State of Alarm 2 R			01 0	FF = Alarm off N = Alarm on		
62* bit	State of Alarm 3 R			OI O	FF = Alarm off N = Alarm on		
69* bit	State of Alarm 4 R			OI O	FF = Alarm off N = Alarm on		
318*		R	State o	of alarm	ALSTATE IRQ		

Heater Break Alarm

195*	8Ln	R/W	Select number of enabled alarms			
57*	НЪΡ	R/W	HB alarm function			
56*	ЖԵԷ	R/W	Delay time for HB alarm activation			
112* _{bit}	Calib alarm	ration F setpoi	HB R OFF = Calibration not e Int N = Calibration ena	ena abl	abled led	
55*	янь і	R/W	HB alarm setpoint (ammeter input scale points - Phase 1)			
502	8HP5	R/W	HB alarm setpoint (ammeter input scale points - Phase 2)			
503	Яньз	R/W	HB alarm setpoint (ammeter input scale points - Phase 3)			
737*	НЪР	R/W	Percentage HB alarm setpoint (am- meter input scale points - Phase 3)			
742*	нрғи	R/W	CT read in HB calibration			
452*	НРЕЛ	R/W	/ TV read in HB calibration			

743*	НЪ₽ ₩	R/W	Ou.P power in calibration		
758*	IrtAd	R/W	HB calibration with IR lamp current at 100% conduction		
759*	Int81	R/W	HB calibration with IR lamp current at 50% conduction		
760*	14585	R/W	HB calibration with IR lamp current at 30% conduction		
761*	1683	R/W	HB calibration with IR lamp current at 20% conduction		
767*	16284	R/W	HB calibration with IR lamp current at 15% conduction		
768*	IntRS	R/W	HB calibration with IR lamp current at 10% conduction		
769*	Irt86	R/W	HB calibration with IR lamp current at 5% conduction		
382*	16287	R/W	HB calibration with IR lamp current at 3% conduction		
383*	16288	R/W	HB calibration with IR lamp current at 2% conduction		
384*	1-289	R/W	HB calibration with IR lamp current at 1% conduction		
445*	Int VO	R/W	HB calibration with IR lamp Voltage at 100% conduction		
446*	1-271	R/W	HB calibration with IR lamp Voltage at 50% conduction		
447*	1-112	R/W	HB calibration with IR lamp Voltage at 30% conduction		
448*	1-EV3	R/W	HB calibration with IR lamp Voltage at 20% conduction		
449*	1681/H	R/W	HB calibration with IR lamp Voltage at 15% conduction		
450*	let VS	R/W	HB calibration with IR lamp Voltage at 10% conduction		
451*	1-EV6	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 5% conduction		
390*	1-573	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 100% conduction		
391*	1-EV8	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 100% conduction		
392*	1-EV9	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 1% conduction		

744*	ЖĿ	ներ		R	HB alarm setpoint as function of power on load				
26* bit	Stare of or POW	HB ala 'ER_Fa	rm ult	R/W					
76* bit	State of phas	HB Ala e 1 TA	ırm	R					
77 bit	State of phas	HB Ala e 2 TA	ırm	R					
78 bit	State of phas	HB Ala e 3 TA	ırm	R					
504		R	St	ates of (fo	alarm HB ALSTATE_HB or 3-phase loads)				
512*		R		States of alarm ALSTATE (for single-phase loads)					
318		R		State o	of alarm ALSTATE IRQ				

Power Fault ALARMS (SSR_SHORT, NO_VOLTAGE and NO_CURRENT)

660*	hd2	R/W	Enab	le POW	/er_fauli	۲ Alarms		
661	465	R/W	Refresh	rate in	TA (Only F	or C4 1TA)		
662*	ЧСF	R/W	Time filt SSR_	ter for a OPEN	alarms NO_ and NO_C	VOLTAGE, URRENT		
105 bit	Reset S VOLT	SSR_OI AGE/N	PEN/SSF O_CURF	R_SHOI RENT A	RT,NO_ larms	R/W		
96* bit	Stat SSR_S⊦	e of ala IORT p	rm hase 1	R				
97 bit	Stat SSR_SF	e of ala IORT p	rm hase 2	R				
98 bit	State of alarm SSR_SHORT phase 3			R				
99* bit	Stat NO_VOL	e of ala TAGE p	rm hase 1	R				
100 bit	Stat NO_VOL	e of ala TAGE p	rm bhase 2	R				
101 bit	Stat NO_VOL	e of ala TAGE p	rm bhase 3	R				
102 bit	Stat NO_CUR	e of ala RENT p	rm ohase 1	R				
103 bit	Stat NO_CUR	e of ala RENT p	rm ohase 2	R				
104 bit	Stat NO_CUR	e of ala RENT p	rm ohase 3	R				

Alarm due to overload

655*	R	INNTC_SSR
534*	R	INNTC_LINE
535*	R	INNTC_LOAD
679*	R	INNTC_SSR_MAX

Fuse Open and Short Circuit Current Alarms

456	Fee	ו R/	N Number FUSE_OPEN / S	of resta	arts in case of _CIRCUIT_CURRENT
109 bit	RESI CIRC	ET FUS CUIT_C	e_open /Short_ Jrrent Alarms	R/W	OFF = - ON = Reset FUSE_OPEN / SHORT_CIRCUIT_CURRENT alarms
116 bit		RE	SETTING F0.cl	R/W	OFF = - ON = Reset count FO.c1
634*		R	State 4 (STATUS	64)

Allocation of Reference Signal

				<u> </u>
160*	rt I	R/W	Allocatio	n of reference signal
163*	rt2	R/W	Allocatio	n of reference signal
166*	rt3	R/W	Allocatio	n of reference signal
170*	rt4	R/W	Allocatio	n of reference signal
171*	rt5	R/W	Allocatio	n of reference signal
172*	r16	R/W	Allocatio	n of reference signal
152*	68 F	R/W	OUT 1	l (Heat) Cycle time
159*	655	R/W	OUT 2	2 (Cool) Cycle time
308 319		R	State	e rL.x MASKOUT
12* bit	STA	TE rL.1	R	OFF = Signal off ON = Signal on
13* bit	STA	TE rL.2	R	OFF = Signal off ON = Signal on
14* bit	STA	TE rL.3	R	OFF = Signal off ON = Signal on
15* bit	STA	TE rL.4	R	OFF = Signal off ON = Signal on
16* bit	STA	TE rL.5	R	OFF = Signal off ON = Signal on
17*	STA	TE rL.6	R	OFF = Signal off ON = Signal on

Allocation of Physical Outputs

607	out (R/W	Allo	catic	on of p	hysical output OUT 1
608	out2	R/W	Allo	catic	on of p	hysical output OUT 2
609	ουέβ	R/W	Allo	ocatic	on of p	hysical output OUT 3
610	ουεΥ	R/W	Allo	catic	on of p	hysical output OUT 4
611	ουξ	R/W	Allo	ocatic	on of p	hysical output OUT 5
612	ουεδ	R/W	Allo	catic	on of p	hysical output OUT 6
613	ουε٦	R/W	Allo	ocatic	on of p	hysical output OUT 7
614	ουε8	R/W	Allo	catic	on of p	hysical output OUT 8
615	ουξ9	R/W	Allo	catic	on of p	hysical output OUT 9
616	ου <mark></mark> 10	R/W	Allo	ocatio	on of pl	nysical output OUT 10
82 bit	State of	outpu	ıt OUT	1	R	OFF = Output off ON = Output on
83 bit	State of	outpu	ıt OUT	2	R	OFF = Output off ON = Output on
84 bit	State of	outpu	ıt OUT	3	R	OFF = Output off ON = Output on
85 bit	State of	outpu	ıt OUT	4	R	OFF = Output off ON = Output on
86 bit	State of	outpu	ıt OUT	5	R	OFF = Output off ON = Output on
87 bit	State of	outpu	ıt OUT	6	R	OFF = Output off
88 bit	State of	outpu	ıt OUT	7	R	OFF = Output off
89	State of	outou	It OUT	8	R	OFF = Output off
bit 90	State of	outpt		-0	D	ON = Output on OFF = Output off
bit 91		Juipt				ON = Output on OFF = Output off
bit	State of	outpu		10	R	ON = Output on
664			R	Stat	e outp	uts (MASKOUT_OUT)

Analog Output

865	£P801	R/W	ŀ	Analog output Type 1				
866	Fb805	R/W	ļ	Analog output Type 2				
867	£P803	R/W	ļ	Analog output Type 3				
868	FR01	R/W		Attribution reference analog output 1				
869	-5805	R/W		Attribution reference analog output 2				
870	rF803	R/W		Attribution reference analog output 3				
871	LSROI	R/W		Minimum scale limit analog output 1				
872	15802	R/W		Minimum scale limit analog output 2				
873	LSR03	R/W		Minimum scale limit analog output 3				
874	XSRO (R/W		Maximum scale limit analog output 1				
875	HS802	R/W		Maximum scale limit analog output 2				
876	HSR03	R/W		Maximum scale limit analog output 3				
727	SERIAL_OU	JTA1	R/W	Serial line value for anal output 1	log			
728	SERIAL_OU	JTA2	R/W	Serial line value for anal output 2	log			
729	SERIAL_OU	JTA3	R/W	Serial line value for anal output 3	log			
877	0580	} {	R	Analog output value 1	1			
8778	0ut80	15	R	Analog output value 2	2			
879	0ut <u>80</u>	3	R	Analog output value 3	3			

Control

617	SPU	R/W	Power reference	
2* 132-471	0uP	R	Value control outputs	
765*	PPEr	R/W	Percentage of output power	
766*	PoFS	R/W	Offset of output power	

763*	ნისხ	R/W	Gradient for output control		
764*	LoP	R/W	Minimum ignition output		

Automatic/Manual Control

252*		R/W		MANUAL_POWER	
2* 132-471	0uP	R/W		Value control outputs (+Heat / -Cool)	
140	9 IC I	R/W		Digital input function 1	
618	8 IG2	R/W		Digital input function 2	
694	9 103	R/W		Digital input function 3	
712	d 164	R/W		Digital input function 4	
1 bit	AUTO/M	AN	R/W	OFF = Automatic ON =Manual	
305		R/W		State (STATUS_W)	

Manual Power Correction

505	in IF	R/W	Line Voltage		
506	Eor	R/W	Correction of manual power based on line voltage		
18 136-249	SPr	R/W	Remote setpoint (SET gradient for manual power correction)		
305		R/W	State (STATUS_W)		

Start Mode

|--|

Software Shutdown

140	13,6	R/W	Digital Input Function 1	
618	50, b	R/W	Digital Input Function 2	
694	6,63	R/W	Digital Input Function 3	

712	8,64	R/W	D	Digital Input Function 4		
11 bit	SOFTW/ ON/OF	ARE F	R/W	OFF = Software OFF ON = Software ON		
700				Software OFF		
68 bit	DIGITAL STAT	input E 1	R/W	OFF = Digital Input 1 OFF ON = Digital Input 1 ON		
92 bit	DIGITAL STAT	INPUT E 2	R/W	OFF = Digital Input 2 OFF ON = Digital Input 2 ON		
67 bit	DIGITAL STAT	INPUT E 3	R/W	OFF = Digital Input 3 OFF ON = Digital Input 3 ON		
66 bit	DIGITAL INPUT STATE 4		R/W	OFF = Digital Input 4 OFF ON = Digital Input 4 ON		
305		R/W		State (STATUS_W)		

Heating Output (Fast Cycle)

160*	et (R/W	Allocation of reference signal	
152*	EE 1	R/W	OUT 1 (Heat) Cycle time	

Operating Hour Meter

396* ☐H _⊏ R/W Hours of operation

SSR Trigger Mode

703*	XdS	R/W	Enable Trigger Modes			
707*	ԲսեԶ	R/W	Max. limit of RMS current in normal operation			
704*	6863	R/W	Minimum number of cycles of BF modes			

Soft Start Trigger Mode

630*	PSX (R/W	Maxir	num phase of phase softstart ramp				
705*	PSEN	R/W	Durat	ion of phase softstart ramp				
629*	PSoF	R/W	Min. no reactiva	on-conduction time to te phase softstart ramp				
706*	PSER	R/W	Maxim during	um peak current limit phase softstart ramp				
108* bit	Restart o softstart	f phase : ramp	R/W	OFF = Restart not ena ON = Restart enabl	abled led			
106* bit	State of softstart	phase ramp	R	OFF = Ramp not ac ON = Ramp active	tive e			

107* bit	State of phase softstart ramp	R	OFF = Ramp not ended ON = Ramp ended
-------------	-------------------------------	---	---

Delay Triggering

708*	ժԼԷ	R/W	Delay triggering (first trigger only)		

Feedback Modes

730*	X92	R/W	Enabl	le feedback modes						
731*	Cor v	R/W	Maximun	n correction of voltage feedback						
732*	Corl	R/W	Maximur	n correction of current feedback						
733*	CorP	R/W	Maximu	m correction of power feedback						
734*	r iF v	R/W	Vc	oltage feedback reference						
735*	r iF v	R/W	Vc	oltage feedback reference						
884 ³ 736 ³ LSW o	* * r.F	ρ _F	R/W	Power feedback reference						
741*	FBIE	R/W	Feedba	ack response speed						
113* bit	Calibrat feedba	ion of v ck refe	/oltage rence	N OFF = Calibration not ON = Calibration enable	ena oled	abled				
886 757 LSW 0	s* ** Br only	٦,	R	Feedback			Setpoint of V, I, P to	maintain	on load	

Heuristic Power Control

680	hd3	R/W	Enable heuristic power control	
681	IHEU	R/W	Maximum current for heuristic power control	

Heterogeneous Power Control

682	ከሪዛ	R/W	Enable heterogeneous power control		
683	IHEE	R/W	Maximum current for heterogeneous power control		

Virtual Instrument Control

191	hd l	R/W	Enable multiset instrument control via serial	
224*	Sin	R/W	Control Inputs from Serial	
225	50u	R/W	Control Outputs from Serial	
628	SU I	R/W	Control LEDs and digital inputs from serial	

HW/SW Data

122	UPd	R	Software version code	
190	Chd	R	Hardware configuration codes	
508	[84 1	R	Hardware configuration codes 1	
543	2943	R	Hardware configuration codes 2	
835	6883	R	Hardware configuration codes 3	
693 697	UPdF	R	Fieldbus software version	
695	CodF	R	Fieldbus node	
696	68UF	R	Fieldbus baudrate	
346		R	State of jumper	
120		R	Manufacturer - Trade Mark	
121		R	Device ID (C4)	
197	LdSE	R/W	RN LED Status Function	
619	563	R/W	ER LED status function	
620	663	R/W	Function of LED DI1	
621	694	R/W	Function of LED DI2	
622	LdS	R/W	Function of LED O1	
623	Ldõ	R/W	Function of LED O2	
624	191	R/W	Function of LED O3	
625	Ld.8	R/W	Function of LED O4	

305*	R/W	State (STATUS_W)	
698*	R	Status saved in eeprom (STATUS_W_EEP)	
467*	R	State (STATUS)	
469*	R	State 1 (STATUS1)	
632*	R	State 2 (STATUS2)	
633*	R	State 3 (STATUS3)	
634*	R	State 4 (STATUS4)	
702	R	Voltage Status	

Limited Warranty: Please refer to the Chromalox limited warranty applicable to this product at http://www.chromalox.com/customer-service/policies/termsofsale.aspx.

Chromalox, Inc. 1347 Heil Quaker Boulevard Lavergne, TN 37086 (615) 793-3900 www.chromalox.com